bone formation

An Additional Lrp4 High Bone Mass Mutation Mitigates the Sost-Knockout Phenotype in Mice by Increasing Bone Remodeling

AUTHORS

Gretl Hendrickx, Eveline Boudin, Ligia Mateiu, Timur A. Yorgan, Ellen Steenackers, Michaela Kneissel, Ina Kramer, Geert Mortier, Thorsten Schinke, Wim Van Hul

ABSTRACT

Pathogenic variants disrupting the binding between sclerostin (encoded by SOST) and its receptor LRP4 have previously been described to cause sclerosteosis, a rare high bone mass disorder. The sclerostin-LRP4 complex inhibits canonical WNT signaling, a key pathway regulating osteoblastic bone formation and a promising therapeutic target for common bone disorders, such as osteoporosis. In the current study, we crossed mice deficient for Sost (Sost−/−) with our p.Arg1170Gln Lrp4 knock-in (Lrp4KI/KI) mouse model to create double mutant Sost−/−;Lrp4KI/KI mice. We compared the phenotype of Sost−/− mice with that of Sost−/−;Lrp4KI/KI mice, to investigate a possible synergistic effect of the disease-causing p.Arg1170Trp variant in Lrp4 on Sost deficiency. Interestingly, presence of Lrp4KI alleles partially mitigated the Sost−/− phenotype. Cellular and dynamic histomorphometry did not reveal mechanistic insights into the observed phenotypic differences. We therefore determined the molecular effect of the Lrp4KI allele by performing bulk RNA sequencing on Lrp4KI/KI primary osteoblasts. Unexpectedly, mostly genes related to bone resorption or remodeling (Acp5, Rankl, Mmp9) were upregulated in Lrp4KI/KI primary osteoblasts. Verification of these markers in Lrp4KI/KI, Sost−/− and Sost−/−;Lrp4KI/KI mice revealed that sclerostin deficiency counteracts this Lrp4KI/KI effect in Sost−/−;Lrp4KI/KI mice. We therefore hypothesize that models with two inactivating Lrp4KI alleles rather activate bone remodeling, with a net gain in bone mass, whereas sclerostin deficiency has more robust anabolic effects on bone formation. Moreover, these effects of sclerostin and Lrp4 are stronger in female mice, contributing to a more severe phenotype than in males and more detectable phenotypic differences among different genotypes.

Lipolysis supports bone formation by providing osteoblasts with endogenous fatty acid substrates to maintain bioenergetic status

AUTHORS

Ananya Nandy, Ron C. M. Helderman, Santosh Thapa, Shobana Jayapalan, Alison Richards, Nikita Narayani, Michael P. Czech, Clifford J. Rosen & Elizabeth Rendina-Ruedy

ABSTRACT

Bone formation is a highly energy-demanding process that can be impacted by metabolic disorders. Glucose has been considered the principal substrate for osteoblasts, although fatty acids are also important for osteoblast function. Here, we report that osteoblasts can derive energy from endogenous fatty acids stored in lipid droplets via lipolysis and that this process is critical for bone formation. As such, we demonstrate that osteoblasts accumulate lipid droplets that are highly dynamic and provide the molecular mechanism by which they serve as a fuel source for energy generation during osteoblast maturation. Inhibiting cytoplasmic lipolysis leads to both an increase in lipid droplet size in osteoblasts and an impairment in osteoblast function. The fatty acids released by lipolysis from these lipid droplets become critical for cellular energy production as cellular energetics shifts towards oxidative phosphorylation during nutrient-depleted conditions. In vivo, conditional deletion of the ATGL-encoding gene Pnpla2 in osteoblast progenitor cells reduces cortical and trabecular bone parameters and alters skeletal lipid metabolism. Collectively, our data demonstrate that osteoblasts store fatty acids in the form of lipid droplets, which are released via lipolysis to support cellular bioenergetic status when nutrients are limited. Perturbations in this process result in impairment of bone formation, specifically reducing ATP production and overall osteoblast function.

Loss of Notch signaling in skeletal stem cells enhances bone formation with aging

AUTHORS

Lindsey H. Remark, Kevin Leclerc, Malissa Ramsukh, Ziyan Lin, Sooyeon Lee, Backialakshmi Dharmalingam, Lauren Gillinov, Vasudev V. Nayak, Paulo El Parente, Margaux Sambon, Pablo J. Atria, Mohamed A. E. Ali, Lukasz Witek, Alesha B. Castillo, Christopher Y, Park, Ralf H. Adams, Aristotelis Tsirigos, Sophie M. Morgani & Philipp Leucht

ABSTRACT

Skeletal stem and progenitor cells (SSPCs) perform bone maintenance and repair. With age, they produce fewer osteoblasts and more adipocytes leading to a loss of skeletal integrity. The molecular mechanisms that underlie this detrimental transformation are largely unknown. Single-cell RNA sequencing revealed that Notch signaling becomes elevated in SSPCs during aging. To examine the role of increased Notch activity, we deleted Nicastrin, an essential Notch pathway component, in SSPCs in vivo. Middle-aged conditional knockout mice displayed elevated SSPC osteo-lineage gene expression, increased trabecular bone mass, reduced bone marrow adiposity, and enhanced bone repair. Thus, Notch regulates SSPC cell fate decisions, and moderating Notch signaling ameliorates the skeletal aging phenotype, increasing bone mass even beyond that of young mice. Finally, we identified the transcription factor Ebf3 as a downstream mediator of Notch signaling in SSPCs that is dysregulated with aging, highlighting it as a promising therapeutic target to rejuvenate the aged skeleton.

Inhibiting WNT secretion reduces high bone mass caused by Sost loss-of-function or gain-of-function mutations in Lrp5

AUTHORS

Cassandra R. Diegel, Ina Kramer, Charles Moes, Gabrielle E. Foxa, Mitchell J. McDonald, Zachary B. Madaj, Sabine Guth, Jun Liu, Jennifer L. Harris, Michaela Kneissel & Bart O. Williams

ABSTRACT

Proper regulation of Wnt signaling is critical for normal bone development and homeostasis. Mutations in several Wnt signaling components, which increase the activity of the pathway in the skeleton, cause high bone mass in human subjects and mouse models. Increased bone mass is often accompanied by severe headaches from increased intracranial pressure, which can lead to fatality and loss of vision or hearing due to the entrapment of cranial nerves. In addition, progressive forehead bossing and mandibular overgrowth occur in almost all subjects. Treatments that would provide symptomatic relief in these subjects are limited. Porcupine-mediated palmitoylation is necessary for Wnt secretion and binding to the frizzled receptor. Chemical inhibition of porcupine is a highly selective method of Wnt signaling inhibition. We treated three different mouse models of high bone mass caused by aberrant Wnt signaling, including homozygosity for loss-of-function in Sost, which models sclerosteosis, and two strains of mice carrying different point mutations in Lrp5 (equivalent to human G171V and A214V), at 3 months of age with porcupine inhibitors for 5–6 weeks. Treatment significantly reduced both trabecular and cortical bone mass in all three models. This demonstrates that porcupine inhibition is potentially therapeutic for symptomatic relief in subjects who suffer from these disorders and further establishes that the continued production of Wnts is necessary for sustaining high bone mass in these models.

Buds of new bone formation within the femoral head of hip fracture patients coincide with zones of low osteocyte sclerostin

AUTHORS

Hiroshige Sano, Tristan Whitmarsh, Linda Skingle, Taketoshi Shimakura, Noriaki Yamamoto, Juliet E. Compston, Hideaki E. Takahashi, Kenneth E. S. Poole

ABSTRACT

Romosozumab treatment reduces the rate of hip fractures and increases hip bone density, increasing bone formation by inhibiting sclerostin protein. We studied the normal pattern of bone formation and osteocyte expression in the human proximal femur because it is relevant to both anti-sclerostin treatment effects and fracture. Having visualized and quantified buds of new bone formation in trabeculae, we hypothesized that they would coincide with areas of a) higher mechanical stress and b) low sclerostin expression by osteocytes. In patients with hip fracture, we visualised each bud of active modeling-based formation, (Forming Minimodeling Structure, FMiS) in trabecular cores taken from different parts of the femoral head. Trabecular bone structure was also measured with high resolution imaging.

More buds of new bone formation (by volume) were present in the higher stress supero-medial zone (FMiS density, N.FMiS/T.Ar) than lower stress supero-lateral (p < 0.05), and inferomedial (p < 0.001) regions. There were fewer sclerostin expressing osteocytes close to, or within FMiS. FMiS density correlated with greater amount, thickness, number and connectivity of trabeculae (bone volume BV/TV, r = 0.65, p < 0.0001; bone surface BS/TV, r = 0.47, p < 0.01; trabecular thickness Tb.Th, r = 0.55, p < 0.001; trabecular number Tb.N, r = 0.47, p < 0.01; and connectivity density Conn.D, r = 0.40, p < 0.05) and lower trabecular separation (Tb.Sp, r = −0.56, p < 0.001).

These results demonstrate modeling-based bone formation in femoral trabeculae from patients with hip fracture as a potential therapeutic target to enhance bone structure.

Engineering 3D-Printed Strontium-Titanium Scaffold-Integrated Highly Bioactive Serum Exosomes for Critical Bone Defects by Osteogenesis and Angiogenesis

AUTHORS

Hao Liu, Ranli Gu, Wei Li, Lijun Zeng, Yuan Zhu, Boon Chin Heng, Yunsong Liu, and Yongsheng Zhou

ABSTRACT

Currently, healing of large bone defects faces significant challenges such as a bulk of bone regeneration and revascularization on the bone defect region. Here, a “cell-free scaffold engineering” strategy that integrates strontium (Sr) and highly bioactive serum exosomes (sEXOs) inside a three-dimensional (3D)-printed titanium (Ti) scaffold (Sc) is first developed. The constructed SrTi Sc can serve as a sophisticated biomaterial platform for maintaining bone morphological characteristics of the radius during the period of critical bone defect (CBD) repair and further accelerating bone formation and fibroblastic suppression via the controlled release of Sr from the superficial layer of the scaffold. Moreover, compared with sEXO from healthy donors, the sEXO extracted from the serum of the femoral fracture rabbit model at the stage of fracture healing, named BF EXO, is robustly capable of facilitating osteogenesis and angiogenesis. In addition, the underlying therapeutic mechanism is elucidated, whereby altering miRNAs shuttled by BF EXO enables osteogenesis and angiogenesis. Further, the in vivo study revealed that the SrTi Sc + BF EXO composite dramatically accelerated bone repair via osteoconduction, osteoinduction, and revascularization in radial CBD of rabbits. This study broadens the source and biomedical potential of specifically functionalized exosomes and provides a comprehensive clinically feasible strategy for therapeutics on large bone defects.