NIK Stabilization in Osteoclasts Results in Osteoporosis and Enhanced Inflammatory Osteolysis

Authors

Chang Yang, Kathleen McCoy, Jennifer L. Davis, Marc Schmidt-Supprian, Yoshiteru Sasaki, Roberta Faccio, Deborah Veis Novack

Abstract

Background: Maintenance of healthy bone requires the balanced activities of osteoclasts (OCs), which resorb bone, and osteoblasts, which build bone. Disproportionate action of OCs is responsible for the bone loss associated with postmenopausal osteoporosis and rheumatoid arthritis. NF-B inducing kinase (NIK) controls activation of the alternative NF-B pathway, a critical pathway for OC differentiation. Under basal conditions, TRAF3-mediated NIK degradation prevents downstream signaling, and disruption of the NIK:TRAF3 interaction stabilizes NIK leading to constitutive activation of the alternative NF-B pathway. Methodology/Principal Findings: Using transgenic mice with OC-lineage expression of NIK lacking its TRAF3 binding domain (NT3), we now find that alternative NF-B activation enhances not only OC differentiation but also OC function. Activating NT3 with either lysozyme M Cre or cathepsinK Cre causes high turnover osteoporosis with increased activity of OCs and osteoblasts. In vitro, NT3-expressing precursors form OCs more quickly and at lower doses of RANKL. When cultured on bone, they exhibit larger actin rings and increased resorptive activity. OC-specific NT3 transgenic mice also have an exaggerated osteolytic response to the serum transfer model of arthritis. Conclusions: Constitutive activation of NIK drives enhanced osteoclastogenesis and bone resorption, both in basal conditions and in response to inflammatory stimuli.

Link to Article

http://dx.doi.org/10.1371/journal.pone.0015383

The Rac1 exchange factor Dock5 is essential for bone resorption by osteoclasts

Authors

Virginie Vives, Mélanie Laurin, Gaelle Cres, Pauline Larrousse, Zakia Morichaud, Danièle Noel, Jean-François Côté, Anne Blangy

Abstract

Osteoporosis, which results from excessive bone resorption by osteoclasts, is the major cause of morbidity for elder people. Identification of clinically relevant regulators is needed to develop novel therapeutic strategies. Rho GTPases have essential functions in osteoclasts by regulating actin dynamics. This is of particular importance since actin cytoskeleton is essential to generate the sealing zone, an osteoclast-specific structure ultimately mediating bone resorption. Here, we report that the atypical Rac1 exchange factor Dock5 is necessary for osteoclast function both in vitro and in vivo. We uncovered that establishment of the sealing zone and consequently osteoclast resorbing activity in vitro require Dock5. Mechanistically, our results suggest that osteoclasts lacking Dock5 have impaired adhesion that can be explained by perturbed Rac1 and p130Cas activities. Consistent with these functional assays, we identified a novel small molecule inhibitor of Dock5 capable of hindering osteoclast resorbing activity. To investigate the in vivo relevance of these findings, we studied Dock5-/- mice and uncovered that they have increased trabecular bone mass, with normal osteoclast numbers, confirming that Dock5 is essential for bone resorption but not for osteoclast differentiation. Taken together, our findings characterize Dock5 as a regulator of osteoclast function and as a potential novel target to develop anti-osteoporotic treatment.

Link to Article

http://dx.doi.org/10.1002/jbmr.282

Loss-of-function of SHARPIN causes an osteopenic phenotype in mice

Authors

Tian Xia, Yanhua Liang, Junrong Ma, Mi Li, Meng Gong, Xijie Yu

Abstract

SHARPIN is a novel protein thought to interact with SHANK family and is widely expressed in multiple tissues/cells, including osteoblasts and osteoclasts. Loss-of-function of Sharpin develops the chronic proliferative dermatitis mutation (CPDM) in mice as well as a severe inflammation in other organs. The actual function of SHARPIN is poorly understood. Our aim was to determine the functional roles of SHARPIN in bone metabolism by using CPDM mice. The skeletal phenotypes were determined by peripheral quantitative computed tomography, micro-computed tomography, and quantitative real-time RT-PCR, the cellular functions of osteoblasts and osteoclasts were investigated by ex vivo cell culture. Compared to wild-type controls, CPDM mice demonstrated significantly lower total and cortical bone mineral content and bone mineral density, trabecular and cortical bone volume, and trabecular number. The mRNA expression of Runx2, osterix, type I collagen, and osteocalcin was significantly lower in the bone from CPDM mice. Osteoclasts and osteoblasts from CPDM mice were functionally defective. Our result suggests that SHARPIN plays important regulating roles in bone metabolism. These functional roles may either come from systemic chronic inflammatory or directly signaling pathway within bone cells.

Link to Article

http://dx.doi.org/10.1007/s12020-010-9418-1

PTH receptor signaling in osteocytes governs periosteal bone formation and intra-cortical remodeling

Authors

Yumie Rhee, Matthew R. Allen, Keith Condon, Virginia Lezcano, Ana C. Ronda, Carlo Galli, Naomi Olivos, Giovanni Passeri, Charles A. O'Brien, Nicoletta Bivi, Lilian I. Plotkin, Teresita Bellido

Abstract

The periosteal and endocortical surfaces of cortical bone dictate the geometry and overall mechanical properties of bone. Yet, the cellular and molecular mechanisms that regulate activity on these surfaces are far from being understood. Parathyroid hormone (PTH) has profound effects in cortical bone, stimulating periosteal expansion and at the same time accelerating intra-cortical bone remodeling. We report herein that transgenic mice expressing a constitutive active PTH receptor in osteocytes (DMP1-caPTHR1 mice) exhibit increased cortical bone area and elevated rate of periosteal and endocortical bone formation. In addition, DMP1-caPTHR1 mice display marked increase in intra-cortical remodeling and cortical porosity. Crossing DMP1-caPTHR1 mice with mice lacking the Wnt co-receptor LDL related receptor 5 (LRP5) or with mice overexpressing the Wnt antagonist Sost in osteocytes (DMP1-Sost mice), reduced or completely abolished, respectively, the increased cortical bone area, periosteal BFR, and expression of osteoblast markers and Wnt target genes exhibited by the DMP1-caPTHR1 mice. In addition, DMP1-caPTHR1 lacking LRP5 or double transgenic DMP1-caPTHR1;DMP1-Sost mice exhibit exacerbated intra-cortical remodeling and osteoclast numbers, and markedly decreased expression of the RANK decoy receptor osteoprotegerin (OPG). Thus, whereas Sost downregulation and the consequent Wnt activation is required for the stimulatory effect of PTH receptor signaling on periosteal bone formation, the Wnt-independent increase in osteoclastogenesis induced by PTH receptor activation in osteocytes overrides the effect on Sost. These findings demonstrate that PTH receptor signaling influences cortical bone through actions on osteocytes and define the role of Wnt signaling in PTH receptor action. © 2010 American Society for Bone and Mineral Research

Link to Article

http://dx.doi.org/10.1002/jbmr.304

Smad signaling determines chondrogenic differentiation of bone-marrow derived mesenchymal stem cells: Inhibition of Smad 1/5/8P prevents terminal differentiation and calcification

Authors

Catharine A Hellingman, Esmeralda Blaney Davidson, Wendy Koevoet, Elly L Vitters, Wim B van den Berg, Gerjo van Osch, Peter M van der Kraan

Abstract

The aim of this study was to investigate the roles of Smad2/3 and Smad1/5/8 phosphorylation in TGF-β induced chondrogenic differentiation of bone-marrow derived mesenchymal stem cells (BMSCs) in order to assess whether specific targeting of different Smad signaling pathways offers possibilities to prevent terminal differentiation and mineralization of chondrogenically differentiated BMSCs. Terminally differentiated chondrocytes produced in-vitro by chondrogenic differentiation of BMSCs or studied ex-vivo during murine embryonic limb formation, stained positive for both Smad2/3P and Smad1/5/8P. Hyaline-like cartilage produced in vitro by articular chondrocytes or studied in ex-vivo articular cartilage samples that lacked expression for MMP13 and collagen X only expressed Smad2/3P. When either Smad2/3 or Smad1/5/8 phosphorylation was blocked in BMSC culture by addition of SB-505124 or dorsomorphin throughout culture, no collagen II expression was observed, indicating that both pathways are involved in early chondrogenesis. Distinct functions for these pathways were demonstrated when Smad signaling was blocked after the onset of chondrogenesis. Blocking Smad2/3P after the onset of chondrogenesis resulted in a halt in collagen II production. On the other hand, blocking Smad1/5/8P during this time period resulted in decreased expression of MMP13, collagen X and alkaline phosphatase while allowing collagen II production. Moreover, blocking Smad1/5/8P prevented mineralization. This indicates that while Smad2/3P is important for continuation of collagen II deposition, Smad1/5/8 phosphorylation is associated with terminal differentiation and mineralization.

Link to Article

http://dx.doi.org/10.1089/ten.TEA.2010.0043

The ARF Tumor Suppressor Regulates Bone Remodeling and Osteosarcoma Development in Mice

Authors

Daniel A. Rauch, Michelle A. Hurchla, John C. Harding, Hongju Deng, Lauren K. Shea, Mark C. Eagleton, Stefan Niewiesk, Michael D. Lairmore, David Piwnica-Worms, Thomas J. Rosol, Jason D. Weber, Lee Ratner, Katherine N. Weilbaecher

Abstract

The ARF tumor suppressor regulates p53 as well as basic developmental processes independent of p53, including osteoclast activation, by controlling ribosomal biogenesis. Here we provide evidence that ARF is a master regulator of bone remodeling and osteosarcoma (OS) development in mice. Arf-/- mice displayed increased osteoblast (OB) and osteoclast (OC) activity with a significant net increase in trabecular bone volume. The long bones of Arf-/- mice had increased expression of OB genes while Arf-/- OB showed enhanced differentiation in vitro. Mice transgenic for the Tax oncogene develop lymphocytic tumors with associated osteolytic lesions, while Tax+Arf-/- mice uniformly developed spontaneous OS by 7 months of age. Tax+Arf-/- tumors were well differentiated OS characterized by an abundance of new bone with OC recruitment, expressed OB markers and displayed intact levels of p53 mRNA and reduced Rb transcript levels. Cell lines established from OS recapitulated characteristics of the primary tumor, including the expression of mature OB markers and ability to form mineralized tumors when transplanted. Loss of heterozygosity in OS tumors arising in Tax+Arf+/- mice emphasized the necessity of ARF-loss in OS development. Hypothesizing that inhibition of ARF-regulated bone remodeling would repress development of OS, we demonstrated that treatment of Tax+Arf-/- mice with zoledronic acid, a bisphosphonate inhibitor of OC activity and repressor of bone turnover, prevented or delayed the onset of OS. These data describe a novel role for ARF as a regulator of bone remodeling through effects on both OB and OC. Finally, these data underscore the potential of targeting bone remodeling as adjuvant therapy or in patients with genetic predispositions to prevent the development of OS.

Link to Article

http://dx.doi.org/10.1371/journal.pone.0015755