Nuclear NAC Influences Bone Matrix Mineralization and Osteoblast Maturation In Vivo

Authors

Thomas Meury, Omar Akhouayri, Toghrul Jafarov, Vice Mandic, and René St-Arnaud

Abstract

Nascent-polypeptide-associated complex and coactivator alpha (NAC) is a protein shuttling between the nucleus and the cytoplasm. Upon phosphorylation at residue serine 43 by integrin-linked kinase, NAC is translocated to the nuclei of osteoblasts, where it acts as an AP-1 coactivator to increase osteocalcin gene transcription. To determine the physiological role of nuclear NAC, we engineered a knock-in mouse model with a serine-to-alanine mutation at position 43 (S43A). The S43A mutation resulted in a decrease in the amount of nuclear NAC with reduced osteocalcin gene promoter occupancy, leading to a significant decrease in osteocalcin gene transcription. The S43A mutant bones also expressed decreased levels of 1(I) collagen mRNA and as a consequence had significantly less osteoid tissue. Transient transfection assays and chromatin immunoprecipitation confirmed the 1(I) collagen gene as a novel NAC target. The reduced quantity of bone matrix in S43A mutant bones was mineralized faster, as demonstrated by the significantly reduced mineralization lag time, producing a lower volume of immature, woven-type bone characterized by poor lamellation and an increase in the number of osteocytes. Accordingly, the expression of the osteocyte differentiation marker genes DMP-1 (dentin matrix protein 1), E11, and SOST (sclerostin) was increased. The accelerated mineralization phenotype was cell autonomous, as osteoblasts isolated from the calvaria of S43A mutant mice mineralized their matrix faster than did wild-type cells. Thus, inhibition of NAC nuclear translocation results in an osteopenic phenotype caused by reduced expression of osteocalcin and type I collagen, accelerated mineralization, and immature woven-bone formation.

Link to Article

http://dx.doi.org/10.1128/mcb.00378-09

Altered bone composition in children with vertebral fracture

Authors

Inari S Tamminen, Mervi K Mäyränpää, Mikael J Turunen, Hanna Isaksson, Outi Mäkitie, Jukka S Jurvelin, Heikki Kröger

Abstract

Primary osteoporosis in children often leads to vertebral fractures but it remains unknown whether these fractures associate with changes in bone composition. This study aimed to determine the differences in bone composition in fracture-prone children with and without vertebral fractures, as assessed by Fourier transform infrared spectroscopic imaging (FTIRI) and bone histomorphometry. Iliac crest bone biopsies (n = 24) were obtained from children who were suspected of primary osteoporosis based on evidence from the fracture history and/or low bone mineral density (BMD) in DXA. Vertebral morphology was determined by radiography. Bone biopsies were analyzed using histomorphometry and FTIRI. Phosphate-to-amide I, carbonate-to-phosphate, carbonate-to-amide I, and cross-link ratios (collagen maturity) were calculated. Children with (n = 14) and without (n = 10) vertebral fracture were compared. Low cancellous bone volume (BV/TV) was detected by histomorphometry in 36% of the children with vertebral fracture, and bone turnover rate was abnormal in 64% of them. Children with vertebral fractures had lower carbonate-to-phosphate ratio (p < 0.05) and higher collagen maturity (p < 0.05) than children without vertebral fracture. The children with low BV/TV in biopsy showed lower carbonate-to-amide I ratio (p < 0.05) than the children with normal bone volume. This study showed changes in bone composition among fracture-prone children who had sustained a vertebral fracture. The observed changes in bone composition in these children might contribute to their greater propensity to sustain vertebral fractures.

Link to Article

http://dx.doi.org/10.1002/jbmr.409

Evaluation of an anorganic bovine-derived mineral with P-15 hydrogel bone graft: preliminary study in a rabbit cranial bone model

Authors

Sérgio Matos, Fernando Guerra, Jack T. Krauser, Helena Figueiredo, João Pedro Marcelino, Mariano Sanz

Abstract

The present investigation aimed to assess the bone-regenerative potential of two formulations of anorganic bovine-derived mineral bound to a P-15 (ABM/P-15) bone graft – the particulate and the hydrogel forms – in a delayed healing rabbit cranial defect model. Ten adult male New Zealand White rabbits were used to create two 8 mm transcortical cranial defects per rabbit and each one received randomly the test material (ABM/P-15 carboxymethyl cellulose (CMC)-hydrogel graft), the standard control material (ABM/P-15 particulate graft) or remained empty as a negative control. The defects were allowed to heal for 2 and 4 weeks. Qualitative and quantitative histological outcomes were assessed on undecalcified sections. In the defects grafted with the test material, at both time points, there was a marked random migration of the bone substitute particles. As a consequence, the space maintenance provision was lost and new bone formation was reduced compared with the control particulate graft material. The histomorphometric analysis showed that the control material attained better results, with an average of 13.8 ± 1.9% and 18.2 ± 4.4% of new bone at 2 and 4 weeks, compared with 8.5 ± 2.4% and 13 ± 2.9% for the test material. These differences were significant at 2 weeks (P≤0.05), but not at 4 weeks (P>0.05). Additionally, there was a significant difference in the total area of mineralized tissue (new bone plus particles), favoring the standard control over the test material: 43.2 ± 14.4% vs. 14.2 ± 5.3% at 2 weeks and 56.9 ± 4.2% vs. 24.2 ± 9.6% at 4 weeks, respectively. The test ABM/P-15 CMC-hydrogel graft material behaved in this animal model by migration of the graft particles, what determined an unpredictable osseoconduction and, consequently, a decreased quality and quantity of bone regeneration as compared with the osseopromotive behavior exhibited by the standard particulate form of the ABM/P-15 control graft. It is therefore suggested to restrain the application of the hydrogel graft form in non-contained anatomical bone defects.

Link to Article

http://dx.doi.org/10.1111/j.1600-0501.2011.02179.x

Skeletal effects of whole-body vibration in adult and aged mice

Authors

Michelle A. Lynch, Michael D. Brodt, Matthew J. Silva

Abstract

Low-amplitude, whole-body vibration (WBV) may be anabolic for bone. Animal studies of WBV have not evaluated skeletal effects in aged animals. We exposed 75 male BALB/c mice (7 month/young-adult; 22 month/aged) to 5 weeks of daily WBV (15 min/day, 5 day/wk; 90 Hz sine wave) at acceleration amplitudes of 0 (sham), 0.3, or 1.0 g. Whole-body bone mineral content (BMC) increased with time in 7 month (p < 0.001) but not 22 month (p = 0.34) mice, independent of WBV (p = 0.60). In 7 month mice, lower-leg BMC increased with time in 0.3 and 1.0 g groups (p < 0.005) but not in the sham group (p = 0.09), indicating a positive WBV effect. In 22 month mice, there were no changes with time in lower-leg BMC (p = 0.11). WBV did not affect tibial trabecular or cortical bone structure (by µCT), dynamic indices of trabecular or cortical bone formation, trabecular osteoclast surface, or the mass of the reproductive fat pad (p > 0.05). Each of these outcomes was diminished in 7 month versus 22 month animals (p < 0.05). In summary, 5 weeks of daily exposure to low-amplitude WBV had no skeletal effects in aged male mice. The potential of WBV to enhance bone mass in age-related osteoporosis is not supported in this preclinical study.

Link to Article

http://dx.doi.org/10.1002/jor.20965

Exposure-dependent increases in IL-1β, substance P, CTGF, and tendinosis in flexor digitorum tendons with upper extremity repetitive strain injury

Authors

Jane M. Fedorczyk, Ann E. Barr, Shobha Rani, Helen G. Gao, Mamta Amin, Shreya Amin, Judith Litvin, Mary F. Barbe

Abstract

Upper extremity tendinopathies are associated with performance of forceful repetitive tasks. We used our rat model of repetitive strain injury to study changes induced in forelimb flexor digitorum tendons. Rats were trained to perform a high repetition high force (HRHF) handle-pulling task (12 reaches/min at 60 ± 5% maximum pulling force [MPF]), or a low repetition negligible force (LRNF) reaching and food retrieval task (three reaches/min at 5 ± 5% MPF), for 2 h/day in 30 min sessions, 3 days/week for 3–12 weeks. Forelimb grip strength was tested. Flexor digitorum tendons were examined at midtendon at the level of the carpal tunnel for interleukin (IL)-1β, neutrophil, and macrophage influx, Substance P, connective tissue growth factor (CTGF), and periostin-like factor (PLF) immunoexpression, and histopathological changes. In HRHF rats, grip strength progressively decreased, while IL-1β levels progressively increased in the flexor digitorum peritendon (para- and epitendon combined) and endotendon with task performance. Macrophage invasion was evident in week 6 and 12 HRHF peritendon but not endotendon. Also in HRHF rats, Substance P immunoexpression increased in week 12 peritendon as did CTGF- and PLF-immunopositive fibroblasts, the increased fibroblasts contributing greatly to peritendon thickening. Endotendon collagen disorganization was evident in week 12 HRHF tendons. LRNF tendons did not differ from controls, even at 12 weeks. Thus, we observed exposure-dependent changes in flexor digitorum tendons within the carpal tunnel, including increased inflammation, nociceptor-related neuropeptide immunoexpression, and fibrotic histopathology, changes associated with grip strength decline.

Link to Article

http://dx.doi.org/10.1002/jor.20984

Role of TNF alpha and PLF in bone remodeling in a rat model of repetitive reaching and grasping

Authors

Shobha Rani, Mary F Barbe, Ann E Barr, Judith Litivn

Abstract

We have previously developed a voluntary rat model of highly repetitive reaching that provides an opportunity to study effects of non-weight bearing muscular loads on bone and mechanisms of naturally occurring inflammation on upper limb tissues in vivo. In this study, we investigated the relationship between inflammatory cytokines and matricellular proteins (Periostin-like-factor, PLF, and connective tissue growth factor, CTGF) using our model. We also examined the relationship between inflammatory cytokines, PLF and bone formation processes. Rats underwent initial training for 5 weeks, and then performed a high repetition high force (HRHF) task (12 reaches/min, 60% maximum grip force, 2 h/day, 3 days/week) for 6 weeks. We then examined the effect of training or task performance with or without treatment with a rat specific TNFα antibody on inflammatory cytokines, osteocalcin (a bone formation marker), PLF, CTGF, and behavioral indicators of pain or discomfort. The HRHF task decreased grip strength and induced forepaw mechanical hypersensitivity in both trained control and 6-week HRHF animals. Two weeks of anti-TNFα treatment improved grip strength in both groups, but did not ameliorate forepaw hypersensitivity. Moreover, anti-TNFα treatment attenuated task-induced increases in inflammatory cytokines (TNFα, IL-1α, and MIP2 in serum; TNFα in forelimb bone and muscles) and serum osteocalcin in 6-week HRHF animals. PLF levels in forelimb bones and flexor digitorum muscles increased significantly in 6-week HRHF animals, increases attenuated by anti-TNFα treatment. CTGF levels were unaffected by task performance or anti-TNFα treatment in 6-week HRHF muscles. In primary osteoblast cultures, TNFα, MIP2 and MIP3a treatment increased PLF levels in a dose dependent manner. Also in primary osteoblast cultures, increased PLF promoted proliferation and differentiation, the latter assessed by measuring Runx2, alkaline phosphatase (ALP) and osteocalcin mRNA levels; ALP activity; as well as calcium deposition and mineralization. Increased PLF also promoted cell adhesion in MC3T3-E1 osteoblast-like cell cultures. Thus, tissue loading in vivo resulted in increased TNFα, which increased PLF, which then induced anabolic bone formation, the latter results confirmed in vitro.

Link to Article

http://dx.doi.org/10.1002/jcp.22208