Proteinase-activated Receptor-2 Gene Disruption Limits the Effect of Osteoarthritis on Cartilage in Mice: A Novel Target in Joint Degradation

Authors

Nathalie Amiable, Johanne Martel-Pelletier, Bertrand Lussier, Steeve Kwan Tat, Jean-Pierre Pelletier, Christelle Boileau

Abstract

Evidence indicates that proteinase-activated receptor (PAR)-2 participates in the degradative processes of human osteoarthritis (OA). We evaluated the in vivo effect of PAR-2 on articular lesions in a PAR-2-knockout (KO) mouse model of OA. Methods.OA was surgically induced by destabilization of the medial meniscus of the right knee in C57Bl/6 wild-type (WT) and PAR-2 KO mice. Knee swelling was measured throughout the duration of the study (8 weeks postsurgery) and histologic evaluation of cartilage was done to assess structure, cellularity, matrix staining, and remodeling in the deep zone. Morphometric analysis of subchondral bone was also performed. Data showed significant knee swelling in the operated WT mice immediately following surgery, which increased with time (8 weeks post-surgery). Knee swelling was significantly lower (p ≤ 0.0001) in PAR-2 KO mice than in WT mice at both 4 and 8 weeks postsurgery. Cartilage damage was found in both operated WT and PAR-2 KO mice; however, lesions were significantly less severe (global score; p ≤ 0.05) in the PAR-2 KO mice at 4 weeks postsurgery. Operated WT mice showed reduced subchondral bone surface and trabecular thickness with significance reached at 4 weeks (p ≤ 0.03 and p ≤ 0.05, respectively), while PAR-2 KO mice demonstrated a gradual increase in subchondral bone surface with significance reached at 8 weeks (p ≤ 0.007). We demonstrated the in vivo implication of PAR-2 in the development of experimental OA, thus confirming its involvement in OA joint structural changes and reinforcing the therapeutic potential of a PAR-2 antagonist for treatment of OA.

Link to Article

http://dx.doi.org/10.3899/jrheum.100710

Enhanced osteointegration of orthopaedic implant gradient coating composed of bioactive glass and nanohydroxyapatite

Authors

Xin-Hui Xie, Xiao-Wei Yu, Shao-Xian Zeng, Rui-Lin Du, Yu-Huai Hu, Zhen Yuan, Er-Yi Lu, Ke-Rong Dai and Ting-Ting Tang

Abstract

We conducted histologic and histomorphometric studies to evaluate the osteointegration of gradient coatings composed of bioactive glass and nanohydroxyapatite (BG–nHA) on titanium-alloy orthopaedic implants and surrounding bone tissue in vivo. Titanium-alloy implants with a gradient coating (gradient coating group), uncoated implants (uncoated group), and implants with a conventional hydroxyapatite (HA) coating (HA coating group) were randomly implanted in bilateral femoral condyles of 36 male New Zealand rabbits. The bone–implant contact at 12 and 24 weeks and the new bone volume in the notch created for observing bone ingrowth at 4, 12, and 24 weeks were found greater in the gradient coating group than those in both the uncoated group and the HA coating group (p < 0.05). Fluorescence micrographs showed active osteogenesis in the gradient coating group at 4 weeks after implantation. These findings indicated that BG–nHA gradient coatings could enhance the osteointegration of orthopaedic implant.

Link to Article

http://dx.doi.org/10.1007/s10856-010-4077-6

Ginsenoside Rg1, a Novel Glucocorticoid Receptor Agonist of Plant Origin, Maintains Glucocorticoid Efficacy with Reduced Side Effects

Authors

Juan Du, Binbin Cheng, Xiaoyan Zhu, Changquan Ling

Abstract

Glucocorticoids (GCs) are widely used to treat inflammatory diseases. However, they cause debilitating side effects, which limit the use of these compounds. In the past decade, many researchers have attempted to find so-called dissociated GCs that have separate distinct transactivation and transrepression activities. Anti-inflammation of GCs is a result of glucocorticoid receptor (GR)-mediated transactivation and transrepression in some tissues, similar to their side effects; therefore, the goal to discover a compound that has anti-inflammatory properties, but lacks the negative side effects seen with GCs, has yet to be achieved. In the present study, we introduce a plant-derived compound, ginsenoside Rg1, which possesses GC and estrogen-like activities. In this study, we show that Rg1 downmodulates LPS-induced proinflammatory cytokine release and inhibits NF-κB nuclear translocation and DNA binding activity. The negative effects on NF-κB activation are due to a decrease in IκB phosphorylation and protein stabilization. Furthermore, the inhibitory effect of Rg1 on NF-κB is GR-dependent, as small interfering RNA knockdown of GR abrogated this function. Rg1 also displayed profound inhibitory effects on LPS-induced MAPK activation. Importantly, Rg1 did not impair proliferation or differentiation of mouse osteoblasts. Finally, we show that Rg1 can effectively inhibit acute and chronic inflammation in vivo, but it does not cause hyperglycemia or osteoporosis as seen with dexamethasone. These results suggest that ginsenoside Rg1 may serve as a novel anti-inflammatory agent and may exhibit a potential profile for therapeutic intervention in inflammatory diseases.

Link to Article

http://www.jimmunol.org/content/early/2011/06/08/jimmunol.1002579.abstract

Trabecular bone microstructure and local gene expression in iliac crest biopsies of men with idiopathic osteoporosis

Authors

Janina M Patsch, Thomas Kohler, Andrea Berzlanovich, Christian Muschitz, Christian Bieglmayr, Paul Roschger, Heinrich Resch, Peter Pietschmann

Abstract

Male idiopathic osteoporosis (MIO) is a metabolic bone disease that is characterized by low bone mass, microstructural alterations, and increased fracture risk in otherwise healthy men. Although the detailed pathophysiology of MIO has yet to be clarified, evidence increasingly suggests an osteoblastic defect as the underlying cause. In this study we tested the hypothesis that the expression profile of certain osteoblastic or osteoblast-related genes (ie, WNT10B, RUNX2, Osterix, Osteocalcin, SOST, RANKL, and OPG) is different in iliac crest biopsies of MIO patients when compared with healthy controls. Furthermore, we investigated the relation of local gene expression characteristics with histomorphometric, microstructural, and clinical features. Following written informed consent and diligent clinical patient characterization, iliac crest biopsies were performed in nine men. While RNA extraction, reverse-transcription, and real-time polymerase chain reactions (PCRs) were performed on one biopsy, a second biopsy of each patient was submitted for histomorphometry and micro–computed tomography (µCT). Age-matched bone samples from forensic autopsies served as controls. MIO patients displayed significantly reduced WNT10B, RUNX2, RANKL, and SOST expression. Performing µCT for the first time in MIO biopsies, we found significant decreases in trabecular number and connectivity density. Trabecular separation was increased significantly, but trabecular thickness was similar in both groups. Histomorphometry revealed decreased BV/TV and osteoid volume and fewer osteoclasts in MIO. By providing evidence for reduced local WNT10B, RUNX2, and RANKL gene expression and histomorphometric low turnover, our data support the osteoblast dysfunction model discussed for MIO. Further, MIO seems to lead to a different microstructural pathology than age-related bone loss.

Link to Article

http://dx.doi.org/10.1002/jbmr.344

Differential maintenance of cortical and cancellous bone strength following discontinuation of bone-active agents

Authors

Mohammad Shahnazari, Wei Yao, Bob Wang, Brian Panganiban, Robert Ritchie, Yolanda Hagar, Nancy E Lane

Abstract

Osteoporotic patients treated with antiresorptive or anabolic agents experience an increase in bone mass and a reduction in incident fractures. However, the effects of these medications on bone quality and strength after a prolonged discontinuation of treatment are not known. We evaluated these effects in an osteoporotic rat model. Six-month-old ovariectomized (OVX) rats were treated with placebo, alendronate (ALN, 2 µg/kg), parathyroid hormone [PTH(1–34); 20 µg/kg], or raloxifene (RAL, 2 mg/kg) three times a week for 4 months and withdrawn from the treatments for 8 months. Treatment with ALN, PTH, and RAL increased the vertebral trabecular bone volume (BV/TV) by 47%, 53%, and 31%, with corresponding increases in vertebral compression load by 27%, 51%, and 31%, respectively (p < .001). The resulting bone strength was similar to that of the sham-OVX control group with ALN and RAL and higher (p < .001) with PTH treatment. After 4 months of withdrawal, bone turnover (BFR/BS) remained suppressed in the ALN group versus the OVX controls (p < .001). The vertebral strength was higher than in the OVX group only in ALN-treated group (p < .05), whereas only the PTH-treated animals showed a higher maximum load in tibial bending versus the OVX controls (p < .05). The vertebral BV/TV returned to the OVX group level in both the PTH and RAL groups 4 months after withdrawal but remained 25% higher than the OVX controls up to 8 months after withdrawal of ALN (p < .05). Interestingly, cortical bone mineral density increased only with PTH treatment (p < .05) but was not different among the experimental groups after withdrawal. At 8 months after treatment withdrawal, none of the treatment groups was different from the OVX control group for cortical or cancellous bone strength. In summary, both ALN and PTH maintained bone strength (maximum load) 4 months after discontinuation of treatment despite changes in bone mass and bone turnover; however, PTH maintained cortical bone strength, whereas ALN maintained cancellous bone strength. Additional studies on the long-term effects on bone strength after discontinuation and with combination of osteoporosis medications are needed to improve our treatment of osteoporosis.

Link to Article

http://dx.doi.org/10.1002/jbmr.249

Characterization of CXCR4 Expression in Chondrosarcoma of Bone

Authors

Shuting Bai, Dezhi Wang, Michael J. Klein, and Gene P. Siegal

Abstract

Alterations in molecular elements derived from the CXC chemokine receptor 4 (CXCR4)/stromal-derived factor 1 (SDF-1) cytokine system have been found to strongly correlate with neoplastic progression leading to metastasis in a number of tumors, including osteosarcoma. Excluding hematologic malignancies, chondrosarcoma of bone is the most common primary malignant tumor of bone in adults in the United States. Like osteosarcoma, chondrosarcoma preferentially metastasizes to lung, bone, and very rarely to regional lymph nodes. However, the role of the signal pathway(s) driving neoplastic progression in chondrosarcoma has not yet been clearly elucidated. To test whether CXCR4 was detectable in chondrosarcoma and whether CXCR4 expression levels correlated with chondrosarcoma grade. Twenty-two chondrosarcoma samples banked at our institution between 2001 and 2006 were retrieved for study. By using invasive ductal carcinoma of the breast and osteosarcoma as the positive controls, immunohistochemistry was performed on paraffin-embedded tissue sections and the intensity of the tumor cells was analyzed by morphometric techniques. All chondrosarcoma cases (22 of 22) were immunoreactive for CXCR4. However, the staining intensity of the CXCR4 between the low- and high-grade groups was significantly different. There was a higher staining intensity in high-grade chondrosarcoma cells (P < .001). CXCR4 is expressed in chondrosarcomas. CXCR4 expression levels were higher in high-grade chondrosarcoma cells than in low-grade specimens. A larger number of cases will be required to confirm these results and expand the observation, but preliminary data would argue for CXCR4 immunohistochemistry as a potential marker for biologic aggressiveness in chondrosarcoma of bone.

Link to Article

http://www.archivesofpathology.org/doi/abs/10.1043/2009-0230-OA.1