Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering

Authors

Daniel L. Alge, Jeffrey Bennett, Trevor Treasure, Sherry Voytik-Harbin, W. Scott Goebel, Tien-Min Gabriel Chu

Abstract

Calcium phosphate cements have many desirable properties for bone tissue engineering, including osteoconductivity, resorbability, and amenability to rapid prototyping-based methods for scaffold fabrication. In this study, we show that dicalcium phosphate dihydrate (DCPD) cements, which are highly resorbable but also inherently weak and brittle, can be reinforced with poly(propylene fumarate) (PPF) to produce strong composites with mechanical properties suitable for bone tissue engineering. Characterization of DCPD–PPF composites revealed significant improvements in mechanical properties for cements with a 1.0 powder to liquid ratio. Compared with nonreinforced controls, flexural strength improved from 1.80 ± 0.19 MPa to 16.14 ± 1.70 MPa, flexural modulus increased from 1073.01 ± 158.40 MPa to 1303.91 ± 110.41 MPa, maximum displacement during testing increased from 0.11 ± 0.04 mm to 0.51 ± 0.09 mm, and work of fracture improved from 2.74 ± 0.78 J/m2 to 249.21 ± 81.64 J/m2. To demonstrate the utility of our approach for scaffold fabrication, 3D macroporous scaffolds were prepared with rapid prototyping technology. Compressive testing revealed that PPF reinforcement increased scaffold strength from 0.31 ± 0.06 MPa to 7.48 ± 0.77 MPa. Finally, 3D PPF–DCPD scaffolds were implanted into calvarial defects in rabbits for 6 weeks. Although the addition of mesenchymal stem cells to the scaffolds did not significantly improve the extent of regeneration, numerous bone nodules with active osteoblasts were observed within the scaffold pores, especially in the peripheral regions. Overall, the results of this study suggest that PPF–DCPD composites may be promising scaffold materials for bone tissue engineering.

Link to Articles

http://dx.doi.org/10.1002/jbm.a.34130

Hyperglycemia and xerostomia are key determinants of tooth decay in type 1 diabetic mice

Authors

Chih-Ko Yeh, Stephen E Harris, Sumathy Mohan, Diane Horn, Roberto Fajardo, Yong-Hee Patricia Chun, James Jorgensen, Mary MacDougall and Sherry Abboud-Werner

Abstract

Insulin-dependent type 1 diabetes mellitus (DM) and oral diseases are closely interrelated. Poor metabolic control in diabetics is associated with a high risk of gingivitis, periodontitis and tooth loss. Salivary flow declines in diabetics and patients suffer from xerostomia. Reduced saliva predisposes to enamel hypomineralization and caries formation; however, the mechanisms that initiate and lead to progression of tooth decay and periodontitis in type 1 DM have not been explored. To address this issue, we analyzed tooth morphology in Akita −/− mice that harbor a point mutation in the Ins2 insulin gene, which leads to progressive hyperglycemia. Mandibles from Akita −/− and wild-type littermates were analyzed by microCT, scanning EM and histology; teeth were examined for amelogenin (Amel) and ameloblastin (Ambn) expression. Mice were injected with pilocarpine to assess saliva production. As hyperglycemia may alter pulp repair, the effect of high glucose levels on the proliferation/differentiation of cultured MD10-F2 pulp cells was also analyzed. Results showed that Akita −/− mice at 6 weeks of age showed chalky white incisors that correlated with marked hyperglycemia and impaired saliva production. MicroCT of Akita −/− teeth revealed excessive enamel wearing and hypomineralization; immunostaining for Amel and Ambn was decreased. A striking feature was invasion of dentinal tubules with Streptococcus mitis and microabcesses that originated in the coronal pulp and progressed to pulp necrosis and periapical periodontitis. High levels of glucose also inhibited MD10-F2 cell proliferation and differentiation. Our findings provide the first evidence that hyperglycemia in combination with reduced saliva in a model of type1 DM leads to decreased enamel mineralization/matrix proteins and predisposes to excessive wearing and decay. Importantly, hyperglycemia adversely affects enamel matrix proteins and pulp repair. Early detection and treatment of hyperglycemia and hyposalivation may provide a useful strategy for preventing the dental complications of diabetes and promoting oral health in this population.

Link to Article

http://dx.doi.org/10.1038/labinvest.2012.60

Primate Genome Gain and Loss: A Bone Dysplasia, Muscular Dystrophy, and Bone Cancer Syndrome Resulting from Mutated Retroviral-Derived MTAP Transcripts

Authors

Olga Camacho-Vanegas, Sandra Catalina Camacho, Jacob Till, Irene Miranda-Lorenzo, Esteban Terzo, Maria Celeste Ramirez, Vern Schramm, Grace Cordovano, Giles Watts, Sarju Mehta, Virginia Kimonis, Benjamin Hoch, Keith D. Philibert, Carsten A. Raabe, David F. Bishop, Marc J. Glucksman and John A. Martignetti

Abstract

Diaphyseal medullary stenosis with malignant fibrous histiocytoma (DMS-MFH) is an autosomal-dominant syndrome characterized by bone dysplasia, myopathy, and bone cancer. We previously mapped the DMS-MFH tumor-suppressing-gene locus to chromosomal region 9p21–22 but failed to identify mutations in known genes in this region. We now demonstrate that DMS-MFH results from mutations in the most proximal of three previously uncharacterized terminal exons of the gene encoding methylthioadenosine phosphorylase, MTAP. Intriguingly, two of these MTAP exons arose from early and independent retroviral-integration events in primate genomes at least 40 million years ago, and since then, their genomic integration has gained a functional role. MTAP is a ubiquitously expressed homotrimeric-subunit enzyme critical to polyamine metabolism and adenine and methionine salvage pathways and was believed to be encoded as a single transcript from the eight previously described exons. Six distinct retroviral-sequence-containing MTAP isoforms, each of which can physically interact with archetype MTAP, have been identified. The disease-causing mutations occur within one of these retroviral-derived exons and result in exon skipping and dysregulated alternative splicing of all MTAP isoforms. Our results identify a gene involved in the development of bone sarcoma, provide evidence of the primate-specific evolution of certain parts of an existing gene, and demonstrate that mutations in parts of this gene can result in human disease despite its relatively recent origin.

Link to Article

http://dx.doi.org/10.1016/j.ajhg.2012.02.024

Oral bone loss induced by mineral deficiency in a rat model: Effect of a synthetic bone mineral (SBM) preparation

Authors

Dindo Mijares, Anupama Kulkarni, Kanthi Lewis, Fang Yao, Qing Xi, Samar Tannous, Renata Dias, Racquel Z. LeGeros

Abstract

Osteoporosis affects the craniofacial and oral structures and has been associated with periodontal bone loss, tooth loss and reduced jaw bone mass. This study aimed to test the therapeutic efficacy of synthetic bone mineral (SBM) in minimizing alveolar bone loss induced by mineral deficiency in a rat model. SBM consists of a calcium carbonate apatite (similar to bone apatite) matrix incorporating magnesium, zinc, and fluoride ions. Thirty female Sprague Dawley rats (2 months old) were randomly distributed into 3 groups (10 rats per group): GA (control), on basic diet; GB, on mineral deficient (MD) diet; and GC, on MD + SBM. The rats were sacrificed after 3 months, the jawbones were isolated and the soft tissues removed. Bone density was determined using X-ray radiography (Faxitron); mandibular cortical width, panoramic mandibular index, and alveolar resorption degree (M/M ratio) using BioquantOsteo; and bone micro-architecture micro-computed tomography and scanning electron microscopy. Compared to control (GA), the rats on MD diet (GB) experienced significant mandibular bone loss while the rats on MD + SBM diet (GC) experienced significantly less bone loss compared to the GB group. SBM, administered orally, may have the potential as an osteoporosis therapeutic agent in minimizing or preventing alveolar bone loss induced by mineral deficiency.

Link to Article

http://dx.doi.org/10.1016/j.archoralbio.2012.02.021

Physiological Notch Signaling Maintains Bone Homeostasis via RBPjk and Hey Upstream of NFATc1

Authors

Xiaolin Tu, Jianquan Chen, Joohyun Lim, Courtney M. Karner, Seung-Yon Lee, Julia Heisig, Cornelia Wiese, Kameswaran Surendran, Raphael Kopan, Manfred Gessler, Fanxin Long

Abstract

Notch signaling between neighboring cells controls many cell fate decisions in metazoans both during embryogenesis and in postnatal life. Previously, we uncovered a critical role for physiological Notch signaling in suppressing osteoblast differentiation in vivo. However, the contribution of individual Notch receptors and the downstream signaling mechanism have not been elucidated. Here we report that removal of Notch2, but not Notch1, from the embryonic limb mesenchyme markedly increased trabecular bone mass in adolescent mice. Deletion of the transcription factor RBPjk, a mediator of all canonical Notch signaling, in the mesenchymal progenitors but not the more mature osteoblast-lineage cells, caused a dramatic high-bone-mass phenotype characterized by increased osteoblast numbers, diminished bone marrow mesenchymal progenitor pool, and rapid age-dependent bone loss. Moreover, mice deficient in Hey1 and HeyL, two target genes of Notch-RBPjk signaling, exhibited high bone mass. Interestingly, Hey1 bound to and suppressed the NFATc1 promoter, and RBPjk deletion increased NFATc1 expression in bone. Finally, pharmacological inhibition of NFAT alleviated the high-bone-mass phenotype caused by RBPjk deletion. Thus, Notch-RBPjk signaling functions in part through Hey1-mediated inhibition of NFATc1 to suppress osteoblastogenesis, contributing to bone homeostasis in vivo.

Link to Article

http://dx.doi.org/10.1371/journal.pgen.1002577

Biofunctionalization of the implant surface with different concentrations of a synthetic peptide (P-15)

Authors

R. Lutz, C. Prechtl, J. Nonhoff, T. Weisel, C. J. Damien, K. A. Schlegel

Abstract

This study aimed at identifying the ideal concentration of a biofunctional surface coating of dental implants with a synthetic peptide (P-15). In a previous study, P-15 was shown to enhance osseointegration parameters. Implants (modified ANKYLOS® A8; FRIADENT Plus® surface) with five different concentrations (0–400 μg/ml) of a P-15 coating as well as uncoated controls were inserted in the frontal bone of 45 adult domestic pigs. The histomorphometric and microradiographic findings for the coated implants were compared to those for the uncoated ones after 7, 14, and 30 days. No significant differences were observed comparing the peri-implant bone density between the coated and uncoated implants The bone-to-implant contact, as the primary histological parameter for osseointegration, showed high rates for all surfaces investigated (between 73.3 ± 17.9% for the control and 81.9 ± 15.2% for P15 20 μg/ml after 30 days). No significant benefit on osseointegration of a biofunctional P-15 coating of dental implants could be displayed in the present study.

Link to Article

http://dx.doi.org/10.1111/j.1600-0501.2012.02455.x