Histomorphologic Changes of the Long Head of the Biceps Tendon in Common Shoulder Pathologies

Authors

Augustus D. Mazzocca, M.S., M.D., Mary Beth R. McCarthy, B.S., Felicia A. Ledgard, M.S., David M. Chowaniec, B.S., William J. McKinnon Jr., B.A., Steven Delaronde, M.P.H., M.S.W., Louis J. Rubino, M.D., John Apolostakos, B.S., Anthony A. Romeo, M.D., Robert A. Arciero, M.D., Knut Beitzel, M.A., M.D.

Abstract

We used 32 LHB tendons of patients undergoing tenodesis (mean age, 54.7 ± 10.1 years) and 9 harvested tissue donors. Tendons were divided according to 4 diagnostic groups: (1) biceps instability, (2) tendinosis, (3) DJD, and (4) normal control. After sectioning, tendons were fixed in formalin and stained with H&E and alcian blue for histologic analysis. Measurements of collagen organization by use of polarized light microscopy was then performed, and protein expression for type I and type III collagen, tenascin C, and decorin was determined. There were no statistical differences found for protein expression of type I or type III collagen, tenascin C, or decorin. The proximal and distal regions of the tendons had statistically significant differences in alcian blue staining, with the proximal portion containing a higher amount of proteoglycan (instability, P = .001; tendinosis, P = .005; DJD, P = .008; control, P = .011). When compared with the nonpathologic control tendons, a significant increase in alcian blue staining for the proximal region was seen in all 3 groups. Total polarized light analysis showed that the distal tendon had a significantly higher intensity (organization) compared with the proximal tendon (P < .001); this was also seen in all of the diagnostic groups (instability, P = .010; tendinosis, P = .013; DJD, P = .07; control, P = .028). This study showed a greater degree of degeneration of the proximal (intra-articular) regions of the LHB tendon when compared with the distal regions in all pathologic groups. However, no major differences at the cellular level were found among groups. The pathomechanisms of the various forms of known LHB diagnoses are not yet fully understood and basic science studies may help in understanding their etiology and therefore optimizing treatment options.

Link to Article

http://dx.doi.org/10.1016/j.arthro.2013.02.002

Constitutive protein kinase A activity in osteocytes and late osteoblasts produces an anabolic effect on bone

Authors

Richard S. Kao, Marcia J. Abbott, Alyssa Louie, Dylan O'Carroll, Weidar Lu, Robert Nissenson

Abstract

Osteocytes have been implicated in the control of bone formation. However, the signal transduction pathways that regulate the biological function of osteocytes are poorly defined. Limited evidence suggests an important role for the Gs/cAMP pathway in osteocyte function. In the present study, we explored the hypothesis that cAMP-dependent kinase A (PKA) activation in osteocytes plays a key role in controlling skeletal homeostasis. To test this hypothesis, we mated mice harboring a Cre-conditional, mutated PKA catalytic subunit allele that encodes a constitutively active form of PKA (CαR) with mice expressing Cre under the control of the osteocyte-specific promoter, DMP1. This allowed us to direct the expression of CαR to osteocytes in double transgenic progeny. Examination of Cre expression indicated that CαR was also expressed in late osteoblasts. Cortical and trabecular bone parameters from 12-week old mice were determined by μCT. Expression of CαR in osteocytes and late osteoblasts altered the shape of cortical bone proximal to the tibia-fibular junction (TFJ) and produced a significant increase in its size. In trabecular bone of the distal femur, fractional bone volume, trabecular number, and trabecular thickness were increased. These increases were partially the results of increased bone formation rates (BFRs) on the endosteal surface of the cortical bone proximal to the TFJ as well as increased BFR on the trabecular bone surface of the distal femur. Mice expressing CαR displayed a marked increase in the expression of osteoblast markers such as osterix, runx2, collagen 1α1, and alkaline phosphatase (ALP). Interestingly, expression of osteocyte marker gene, DMP1, was significantly up-regulated but the osteocyte number per bone area was not altered. Expression of SOST, a presumed target for PKA signaling in osteocytes, was significantly down-regulated in females. Importantly, no changes in bone resorption were detected. In summary, constitutive PKA signaling in osteocytes and late osteoblasts led to a small expansion of the size of the cortical bone proximal to the TFJ and an increase in trabecular bone in female mice. This was associated with down-regulation of SOST and up-regulation of several osteoblast marker genes. Activation of the PKA pathway in osteocytes and late osteoblasts is sufficient for the initiation of an anabolic skeletal response.

Link to Article

http://dx.doi.org/10.1016/j.bone.2013.04.001

C/EBPα regulates osteoclast lineage commitment

Authors

Wei Chen1, Guochun Zhu, Liang Hao, Mengrui Wu, Hongliang Ci, and Yi-Ping Li

Abstract

Despite recent insights gained from the effects of targeted deletion of the Finkel-Biskis-Jinkins osteosarcoma oncogene (c-fos), Spleen focus-forming virus (SFFV) proviral integration 1 (PU.1), microphthalmia-associated transcription factor, NF-κB, and nuclear factor of activated cells cytoplasmic 1 (NFATc1) transcription factor genes, the mechanism underlying transcription factors specifying osteoclast (OC) lineage commitment from monocyte/macrophage remains unclear. To characterize the mechanism by which transcription factors regulate OC lineage commitment, we mapped the critical cis-regulatory element in the promoter of cathepsin K (Ctsk), which is expressed specifically in OCs, and found that CCAAT/enhancer binding protein α (C/EBPα) is the critical cis-regulatory element binding protein. Our results indicate that C/EBPα is highly expressed in pre- OCs and OCs. The combined presence of macrophage colony-stimulating factor and receptor activator of NF-κB ligand significantly induces high C/EBPα expression. Furthermore, C/EBPα−/− newborn mice exhibited impaired osteoclastogenesis, and a severe osteopetrotic phenotype, but unaffected monocyte/macrophage development. Impaired osteoclastogenesis of C/EBPα−/− mouse bone marrow cells can be rescued by c-fos overexpression. Ectopic expression of C/EBPα in mouse bone marrow cells and monocyte/macrophage cells, in the absence of receptor activator of NF-κB ligand, induces expression of receptor activator of NF-κB, c-fos, Nfatc1, and Ctsk, and it reprograms monocyte/macrophage cells to OC-like cells. Our results demonstrate that C/EBPα directly up-regulates c-fos expression. C/EBPα+/− mice exhibit an increase in bone density compared with C/EBPα+/+ controls. These discoveries establish C/EBPα as the key transcriptional regulator of OC lineage commitment, providing a unique therapeutic target for diseases of excessive bone resorption, such as osteoporosis and arthritis.

Link to Article

http://dx.doi.org/10.1073/pnas.1211383110

Incidence and bone biopsy findings of atypical femoral fractures

Authors

Inari S. Tamminen, Tero Yli-Kyyny, Hanna Isaksson, Mikael J. Turunen, Xiaoyu Tong, Jukka S. Jurvelin, Heikki Kröger

Abstract

Bisphosphonates are widely used in the treatment of osteoporosis. It has been suggested that bisphosphonate treatment may be associated with atypical femoral fractures (AFFs), severely suppressed bone turnover rate, and decreased mineralization. We studied bone properties using bone quantitative histomorphometry and Fourier transform infrared spectroscopic imaging (FTIRI) on patients with AFFs. Further, the incidence of AFFs was estimated. Patient records of Kuopio University Hospital, Finland from January 2007 to June 2009 were reviewed to identify all patients who had sustained and had been operated for AFF (n = 8). The incidence of AFFs among patients on bisphosphonates was 0.61 fractures/1,000 patients per year, compared to 0.0067/1,000 per year among untreated patients. The patients that underwent bone biopsy (n = 4) were postmenopausal women (aged 55.5–81.1 years) who had been treated with bisphosphonates for over 4 years. Histomorphometry revealed low trabecular bone volume. Bone formation and resorption parameters tended to be low. Trabecular bone single labels were detected in one patient in the region of interest. In the extended label search, trabecular bone double labels were found in two patients. Based on FTIRI results, higher phosphate-to-amide I ratio and collagen maturity were found compared to normal samples. The heterogeneity of phosphate-to-amide I ratio was low. Overall incidence of atypical femoral fractures is low. The poor fracture resistance in some patients on long-term bisphosphonate-therapy could be explained by low bone formation, and changes in bone composition, i.e., higher degree of mineralization, increased collagen maturity, and decreased heterogeneity of the degree of mineralization.

Link to Article

http://dx.doi.org/10.1007/s00774-013-0448-7

A peptidomimetic antagonist of the alpha(v)beta3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo

Authors

V W Engleman, G A Nickols, F P Ross, M A Horton, D W Griggs, S L Settle, P G Ruminski and S L Teitelbaum

Abstract

Osteoclastic bone degradation requires intimacy between the matrix and the resorptive cell. While the precise role the integrin alpha(v)beta3 plays in the process is not yet understood, occupancy of the heterodimer by soluble ligand or by blocking antibody effectively inhibits bone resorption in vitro and in vivo, suggesting that alpha(v)beta3 blockade may prevent postmenopausal osteoporosis. Thus, we identified a synthetic chemical peptide mimetic, beta-[2-[[5-[(aminoiminomethyl)amino]-1-oxopentyl]amino]-1-+ ++oxoethyl]amino-3-pyridinepropanoic acid, bistrifluoroacetate (SC56631) based upon the alpha(v)beta3 ligand, Arg-Gly-Asp (RGD), which recognizes the isolated integrin, and its relative, alpha(v)beta5, as effectively as does the natural peptide. The mimetic dampens osteoclastic bone resorption in vitro and in vivo. Most importantly, intravenous administration of the mimetic prevents the 55% loss of trabecular bone sustained by rats within 6 wk of oophorectomy. Histological examination of bones taken from SC56631-treated, oophorectomized animals also demonstrates the compound's bone sparing properties and its capacity to decrease osteoclast number. Thus, an RGD mimetic prevents the rapid bone loss that accompanies estrogen withdrawal.

Link to Article

http://dx.doi.org/10.1172/JCI119404

Development and characterization of murine models of medulloblastoma extraneural growth in bone

Authors

Jessica M. Grunda, Dezhi Wang, Gregory A. Clines

Abstract

Medulloblastoma is a malignant pediatric brain neoplasm with an unusual predilection for metastasis to the skeleton. The objective of this study was to generate and characterize murine models of medulloblastoma extraneural growth in bone as ‘discovery tools’ for the identification of unrecognized signal transduction pathways and factors driving metastatic bone disease. To this end, the human Daoy and D283 medulloblastoma cell lines were inoculated into the intratibial medullary space of athymic nude mice. Daoy injected mice developed a primarily osteolytic radiographic and histological phenotype. In contrast, both areas of osteolytic and osteosclerotic activity were evident in D283 inoculated bones. D283 and Daoy cell conditioned media increased in vitro osteoblast differentiation and is consistent with the enhanced bone turnover characteristic of bone metastases. Daoy cells also significantly increased bone marrow osteoclast formation, consistent with the robust in vivo osteolytic phenotype. A survey of secreted factors implicated in bone metastasis and expressed by D283 and Daoy was performed. High expression of the bone-homing factor, CXCR4, was observed in both Daoy and D283 tissues. Consistent with the skeletal phenotypes, Daoy cells, while secreting the osteoblastic factor ET-1, abundantly produced the osteolytic factors RANKL, PTHrP and TNFα. D283 cells produced high levels of both RANKL and ET-1. These newly described animal models of medulloblastoma bone metastasis are expected to serve as platforms to aid in the elucidation of novel bone metastasis signaling cascades and to test therapeutics that target both medulloblastoma metastasis and the primary tumor.

Link to Article

http://dx.doi.org/10.1007/s10585-013-9577-6