Japanese Medaka: A Non-Mammalian Vertebrate Model for Studying Sex and Age-Related Bone Metabolism In Vivo

Authors

Admane H. Shanthanagouda, Bao-Sheng Guo, Rui R. Ye, Liang Chao, Michael W. L. Chiang, Gopalakrishnan Singaram, Napo K. M. Cheung, Ge Zhang, Doris W. T. Au

Abstract

Background

In human, a reduction in estrogen has been proposed as one of the key contributing factors for postmenopausal osteoporosis. Rodents are conventional models for studying postmenopausal osteoporosis, but the major limitation is that ovariectomy is needed to mimic the estrogen decline after menopause. Interestingly, in medaka fish (Oryzias latipes), we observed a natural drop in plasma estrogen profile in females during aging and abnormal spinal curvature was apparent in old fish, which are similar to postmenopausal women. It is hypothesized that estrogen associated disorders in bone metabolism might be predicted and prevented by estrogen supplement in aging O. latipes, which could be corresponding to postmenopausal osteoporosis in women.

Principal findings

In O. latipes, plasma estrogen was peaked at 8 months old and significantly declined after 10, 11 and 22 months in females. Spinal bone mineral density (BMD) and micro-architecture by microCT measurement progressively decreased and deteriorated from 8 to 10, 12 and 14 months old, which was more apparent in females than the male counterparts. After 10 months old, O. latipes were supplemented with 17α-ethinylestradiol (EE2, a potent estrogen mimic) at 6 and 60 ng/mg fish weight/day for 4 weeks, both reduction in spinal BMD and deterioration in bone micro-architecture were significantly prevented. The estrogenic effect of EE2 in O. latipes was confirmed by significant up-regulation of four key estrogen responsive genes in the liver. In general, bone histomorphometric analyses indicated significantly lowered osteoblasts and osteoclasts numbers and surfaces on vertebrae of EE2-fed medaka.

Significance

We demonstrate osteoporosis development associated with natural drop in estrogen level during aging in female medaka, which could be attenuated by estrogen treatment. This small size fish is a unique alternative non-mammalian vertebrate model for studying estrogen-related molecular regulation in postmenopausal skeletal disorders in vivo without ovariectomy.

Link To Article

http://dx.doi.org/10.1371/journal.pone.0088165

WNT7B Promotes Bone Formation in part through mTORC1

Authors

Jianquan Chen, Xiaolin Tu, Emel Esen, Kyu Sang Joeng, Congxin Lin, Jeffrey M. Arbeit, Markus A. Rüegg, Michael N. Hall, Liang Ma, Fanxin Long

Abstract

WNT signaling has been implicated in both embryonic and postnatal bone formation. However, the pertinent WNT ligands and their downstream signaling mechanisms are not well understood. To investigate the osteogenic capacity of WNT7B and WNT5A, both normally expressed in the developing bone, we engineered mouse strains to express either protein in a Cre-dependent manner. Targeted induction of WNT7B, but not WNT5A, in the osteoblast lineage dramatically enhanced bone mass due to increased osteoblast number and activity; this phenotype began in the late-stage embryo and intensified postnatally. Similarly, postnatal induction of WNT7B in Runx2-lineage cells greatly stimulated bone formation. WNT7B activated mTORC1 through PI3K-AKT signaling. Genetic disruption of mTORC1 signaling by deleting Raptor in the osteoblast lineage alleviated the WNT7B-induced high-bone-mass phenotype. Thus, WNT7B promotes bone formation in part through mTORC1 activation.

Link To Article

http://dx.doi.org/10.1371/journal.pgen.1004145

RANKL Inhibition Blocks Osteolytic Lesions and Reduces Skeletal Tumor Burden in Models of Non-Small-Cell Lung Cancer Bone Metastases

Authors

Miller RE, Jones JC, Tometsko M, Blake ML, Dougall WC

Abstract

INTRODUCTION:

Bone metastasis is a serious complication in patients with lung cancer, occurring in up to 40% of patients. Tumor cell-mediated osteolysis occurs ultimately through induction of RANK ligand (RANKL) within the bone stroma although this hypothesis has not been tested extensively in the setting of non-small-cell lung cancer (NSCLC). By using two novel NSCLC bone metastasis mouse models, we examined the effects of RANKL inhibition on osteolysis and tumor progression.

METHODS:

We treated mice bearing skeletal NSCLC tumors with osteoprotegerin-Fc (OPG-Fc) to assess whether osteoclast inhibition through RANKL inhibition would affect bone metastases at early or late stages of bone colonization. Progression of skeletal tumor was determined by radiography, longitudinal bioluminescent imaging, and histological analyses.

RESULTS:

OPG-Fc reduced development and progression of radiographically evident osteolytic lesions and also significantly reduced skeletal tumor progression in both NSCLC bone metastasis models. In the H1299 human NSCLC bone metastasis model, OPG-Fc plus docetaxel in combination resulted in significantly greater inhibition of skeletal tumor growth compared with either single agent alone. The observed ability of RANKL inhibition to reduce NSCLC osteolytic bone destruction or skeletal tumor burden was associated with decreases in tumor-associated osteoclasts.

CONCLUSIONS:

These results demonstrate that RANKL is required for the development of tumor-induced osteolytic bone destruction caused by NSCLC cells in vivo. RANKL inhibition also reduced skeletal tumor burden, presumably through the indirect mechanism of blocking tumor-induced osteoclastogenesis and resultant production of growth factors and calcium from the bone microenvironment. RANKL inhibition also provided an additive benefit to docetaxel treatment by augmenting the reduction of tumor burden.

Link To Article

http://www.ncbi.nlm.nih.gov/pubmed/24496001

1,25(OH)2D3 Induces a Mineralization Defect and Loss of Bone Mineral Density in Genetic Hypercalciuric Stone-Forming Rats

Authors

Adeline H. Ng, Kevin K. Frick, Nancy S. Krieger, John R. Asplin, Madison Cohen-McFarlane, Christopher D. Culbertson, Kelly Kyker-Snowman, Marc D. Grynpas, David A. Bushinsky

Abstract

Genetic hypercalciuric stone-forming (GHS) rats, bred to maximize urine (u) calcium (Ca) excretion, demonstrate increased intestinal Ca absorption, increased bone Ca resorption, and reduced renal Ca reabsorption, all leading to elevated uCa compared to the parental Sprague–Dawley (SD) rats. GHS rats have increased numbers of vitamin D receptors (VDRs) at each site, with normal levels of 1,25(OH)2D3 (1,25D), suggesting their VDR is undersaturated with 1,25D. We have shown that 1,25D induces a greater increase in uCa in GHS than SD rats. To examine the effect of the increased VDR on the osseous response to 1,25D, we fed GHS and SD rats an ample Ca diet and injected either 1,25D [low dose (LD) 12.5 or high dose (HD) 25 ng/100 g body weight/day] or vehicle (veh) daily for 16 days. Femoral areal bone mineral density (aBMD, by DEXA) was decreased in GHS+LD and GHS+HD relative to GHS+veh, while there was no effect on SD. Vertebral aBMD was lower in GHS compared to SD and further decreased in GHS+HD. Both femoral and L6 vertebral volumetric BMD (by μCT) were lower in GHS and further reduced by HD. Histomorphometry indicated a decreased osteoclast number in GHS+HD compared to GHS+veh or SD+HD. In tibiae, GHS+HD trabecular thickness and number increased, with a 12-fold increase in osteoid volume but only a threefold increase in bone volume. Bone formation rate was decreased in GHS+HD relative to GHS+veh, confirming the mineralization defect. The loss of BMD and the mineralization defect in GHS rats contribute to increased hypercalciuria; if these effects persist, they would result in decreased bone strength, making these bones more fracture-prone. The enhanced effect of 1,25D in GHS rats indicates that the increased VDRs are biologically active.

Link To Article

http://dx.doi.org/10.1007/s00223-014-9838-7

Loss of Cbl-PI3K interaction enhances osteoclast survival due to p21-Ras mediated PI3K activation independent of Cbl-b

Authors

Naga Suresh Adapal1, Mary F. Barbe, Alexander Tsygankov, Joseph Lorenzo, Archana Sanjay

Abstract

Cbl family proteins, Cbl and Cbl-b, are E3 ubiquitin ligases and adaptor proteins, which play important roles in bone-resorbing osteoclasts. Loss of Cbl in mice decreases osteoclast migration, resulting in delayed bone development where as absence of Cbl-b decreases bone volume due to hyper-resorptive osteoclasts. A major structural difference between Cbl and Cbl-b is tyrosine 737 (in YEAM motif) only on Cbl, which upon phosphorylation interacts with p85 subunit of phosphatidylinositol-3 Kinase (PI3K). In contrast to Cbl-/- and Cbl-b-/-, mice lacking Cbl-PI3K interaction due to a Y737F (tyrosine to phenylalanine, YF) mutation showed enhanced osteoclast survival, but defective resorption. To investigate whether Cbl-PI3K interaction contributes to distinct roles of Cbl and Cbl-b in osteoclasts, mice bearing CblY737F mutation in the Cbl-b-/- background (YF/YF;Cbl-b-/-) were generated. The differentiation and survival were augmented similarly in YF/YF and YF/YF;Cbl-b-/- osteoclasts, associated with enhanced PI3K signaling suggesting an exclusive role of Cbl-PI3K interaction, independent of Cbl-b. In addition to PI3K, the small GTPase Ras also regulates osteoclast survival. In the absence of Cbl-PI3K interaction, increased Ras GTPase activity and Ras-PI3K binding were observed and inhibition of Ras activation attenuated PI3K mediated osteoclast survival. In contrast to differentiation and survival, increased osteoclast activity observed in Cbl-b-/- mice persisted even after introduction of the resorption-defective YF mutation in YF/YF;Cbl-b-/- mice. Hence, Cbl and Cbl-b play mutually exclusive roles in osteoclasts. Whereas Cbl-PI3K interaction regulates differentiation and survival, bone resorption is predominantly regulated by Cbl-b in osteoclasts.

Link To Article

http://dx.doi.org/10.1002/jcb.24779

Colony-stimulating factor 1 potentiates lung cancer bone metastasis

Authors

Jaclyn Y Hung, Diane Horn, Kathleen Woodruff, Thomas Prihoda, Claude LeSaux, Jay Peters, Fermin Tio and Sherry L Abboud-Werner

Abstract

Colony-stimulating factor 1 (CSF1) is essential for osteoclastogenesis that mediates osteolysis in metastatic tumors. Patients with lung cancer have increased CSF1 in serum and high levels are associated with poor survival. Adenocarcinomas metastasize rapidly and many patients suffer from bone metastasis. Lung cancer stem-like cells sustain tumor growth and potentiate metastasis. The purpose of this study was to determine the role of CSF1 in lung cancer bone metastasis and whether inhibition of CSF1 ameliorates the disease. Human lung adenocarcinoma A549 cells were examined in vitro for CSF1/CSF1R. A549-luc cells were injected intracardiac in NOD/SCID mice and metastasis was assessed. To determine the effect of CSF1 knockdown (KD) in A549 cells on bone metastasis, cells were stably transfected with a retroviral vector containing short-hairpin CSF1 (KD) or empty vector (CT). Results showed that A549 cells express CSF1/CSF1R; CSF1 increased their proliferation and invasion, whereas soluble CSF1R inhibited invasion. Mice injected with A549-luc cells showed osteolytic bone lesions 3.5 weeks after injection and lesions increased over 5 weeks. Tumors recapitulated adenocarcinoma morphology and showed osteoclasts along the tumor/bone interface, trabecular, and cortical bone loss. Analyses of KD cells showed decreased CSF1 protein levels, reduced colony formation in soft agar assay, and decreased fraction of stem-like cells. In CSF1KD mice, the incidence of tumor metastasis was similar to controls, although fewer CSF1KD mice had metastasis in both hind limbs. KD tumors showed reduced CSF1 expression, Ki-67+ cells, and osteoclasts. Importantly, there was a low incidence of large tumors >0.1 mm2 in CSF1KD mice compared with control mice (10% vs 62.5%). This study established a lung osteolytic bone metastasis model that resembles human disease and suggests that CSF1 is a key determinant of cancer stem cell survival and tumor growth. Results may lead to novel strategies to inhibit CSF1 in lung cancer and improve management of bone metastasis.

Link To Article

http://dx.doi.org/10.1038/labinvest.2014.1