Interleukin-32 gamma (IL-32γ) is a recently discovered cytokine that is elevated in inflamed tissues and contributes to pathogenic features of bone in human inflammatory rheumatic diseases. Nevertheless, the role of IL-32γ and its direct involvement in bone metabolism is unclear.
Defective signaling, osteoblastogenesis and bone remodeling in a mouse model of connexin 43 C-terminal truncation
In skeletal tissue, loss or mutation of the gap junction protein connexin 43 (Cx43, also known as GJA1) in cells of the osteoblast lineage leads to a profound cortical bone phenotype and defective tissue remodeling. There is mounting evidence in bone cells that the C-terminus (CT) of Cx43 is a docking platform for signaling effectors and is required for efficient downstream signaling.
Lysine-specific demethylase 1 inhibitor rescues the osteogenic ability of mesenchymal stem cells under osteoporotic conditions by modulating H3K4 methylation
Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes
Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background.
EGFR signaling is critical for maintaining the superficial layer of articular cartilage and preventing osteoarthritis initiation
Osteoarthritis (OA) is the most common joint disease, characterized by progressive destruction of the articular cartilage. The surface of joint cartilage is the first defensive and affected site of OA, but our knowledge of genesis and homeostasis of this superficial zone is scarce. EGFR signaling is important for tissue homeostasis.
Increased Bone Mass in Female Mice Lacking Mast Cell Chymase
Here we addressed the potential impact of chymase, a mast-cell restricted protease, on mouse bone phenotype. We show that female mice lacking the chymase Mcpt4 acquired a persistent expansion of diaphyseal bone in comparison with wild type controls, reaching a 15% larger diaphyseal cross sectional area at 12 months of age.