Decreased activity or expression of sclerostin, an endogenous inhibitor of Wnt/β-catenin signaling, results in increased bone formation and mass. Antibodies targeting and neutralizing sclerostin (Scl-Ab) have been shown to increase bone mass and reduce fracture risk. Sclerostin is also important in modulating the response of bone to changes in its biomechanical environment. However, the effects of Scl-Ab on mechanotransduction are unclear, and it was speculated that the loading response may be altered for individuals receiving Scl-Ab therapy.
Heterozygous deletion of both sclerostin (Sost) and connexin43 (Gja1) genes in mice is not sufficient to impair cortical bone modeling
Connexin43 (Cx43) is the main gap junction protein expressed in bone forming cells, where it modulates peak bone mass acquisition and cortical modeling. Genetic ablation of the Cx43 gene (Gja1) results in cortical expansion with accentuated periosteal bone formation associated with decreased expression of the Wnt inhibitor sclerostin.
Mechanically stable surface-hydrophobilized chitosan nanofibrous barrier membranes for guided bone regeneration
The use of chitosan based nanofiber membranes in guided bone regeneration (GBR) is limited by its uncontrolled swelling and mechanical instability in aqueous environments. This paper describes the significantly improved stability and properties of surface butyrylated chitosan nanofiber (BCSNF) membranes that greatly enhance their potential in GBR.
Built-In Electric Fields Dramatically Induce Enhancement of Osseointegration
Rapid and effective osseointegration is a great challenge in clinical practice. Endogenous electronegative potentials spontaneously appear on bone defect sites and mediate healing. Thus, bone healing can potentially be stimulated using physiologically relevant electrical signals in implants. However, it is difficult to directly introduce physiologically relevant electric fields in bone tissue.
Protective effect of low-dose risedronate against osteocyte apoptosis and bone loss in ovariectomized rats
Osteocyte apoptosis is the first reaction to estrogen depletion, thereby stimulating osteoclastic bone resorption resulting in bone loss. We investigated the effects of two different risedronate (RIS) doses (high and low) on osteocyte apoptosis, osteoclast activity and bone loss in ovariectomized rats.
Reproduction Differentially Affects Trabecular Bone Depending on Its Mechanical Versus Metabolic Role
During pregnancy and lactation, the maternal skeleton provides calcium for fetal/infant growth, resulting in substantial bone loss, which partially recovers after weaning. However, the amount of bone that is lost and the extent of post-weaning recovery are highly variable among different skeletal sites, and, despite persistent alterations in bone structure at some locations, reproductive history does not increase postmenopausal fracture risk.