Adiponectin Reduces Bone Stiffness: Verified in a Three-Dimensional Artificial Human Bone Model In Vitro

AUTHORS

Sigrid Haugen, iJianying He, Alamelu Sundaresan, Astrid Kamilla Stunes, Kristin Matre Aasarød, Hanna Tiainen, Unni Syversen, Bjørn Skallerud and Janne Elin Reseland

ABSTRACT

Primary human osteoblasts and osteoclasts incubated in a rotating coculture system without any scaffolding material, form bone-like tissue that may be used to evaluate effects of various compounds on mechanical strength. Circulating adiponectin has been found to be negatively associated with BMD and strength and was therefore assessed in this system. Osteospheres of human osteoblasts and osteoclasts were generated with and without adiponectin. The osteospheres were scanned using micro-computed tomography, the mechanical properties were tested by flat punch compression using nanoindentation equipment, and the cellular morphology characterized by microscopy. The association between autologously produced adiponectin and biomechanical properties was further evaluated by quantitation of adiponectin levels using quantitative polymerase chain reaction (qPCR) and immunoassays, and identification of stiffness by bending test of rat femurs. The molecular mechanisms were examined in vitro using human bone cells. Mechanical testing revealed that adiponectin induced a more compliant osteosphere compared with control. The osteospheres had a round, lobulated appearance with morphologically different areas; inner regions containing few cells embedded in a bone-like material surrounded by an external area with a higher cell quantity. The expression of adiponectin was found to correlate positively to ultimate bending moment and ultimate energy absorption and deflection, on the other hand, it correlated negatively to bending stiffness, indicating autocrine and/or paracrine effects of adiponectin in bone. Adiponectin enhanced proliferation and expression of collagen, leptin, and tumor necrosis factor-alpha in osteoblasts and stimulated proliferation, but not the functional activity of osteoclasts. Our results indicate that both administration of adiponectin during osteosphere production and in situ elevated levels of adiponectin in rat femurs, reduced stiffness of the bone tissues. An increase in undifferentiated cells and extracellular matrix proteins, such as collagen, may explain the reduced bone stiffness seen in the osteospheres treated with adiponectin.

Age-related epigenetic changes in hippocampal subregions of four animal models of Alzheimer's disease

AUTHORS

Roy Lardenoije, Daniël L.A. van den Hove, Monique Havermans, Annevan Casteren, Kevin X. Le, Roberta Palmour, Cynthia A. Lemere, Bart P.F. Rutten

ABSTRACT

Both aging and Alzheimer's disease (AD) are associated with widespread epigenetic changes, with most evidence suggesting global hypomethylation in AD. It is, however, unclear how these age-related epigenetic changes are linked to molecular aberrations as expressed in animal models of AD. Here, we investigated age-related changes of epigenetic markers of DNA methylation and hydroxymethylation in a range of animal models of AD, and their correlations with amyloid plaque load. Three transgenic mouse models, including the J20, APP/PS1dE9 and 3xTg-AD models, as well as Caribbean vervets (a non-transgenic non-human primate model of AD) were investigated. In the J20 mouse model, an age-related decrease in DNA methylation was found in the dentate gyrus (DG) and a decrease in the ratio between DNA methylation and hydroxymethylation was found in the DG and cornu ammonis (CA) 3. In the 3xTg-AD mice, an age-related increase in DNA methylation was found in the DG and CA1-2. No significant age-related alterations were found in the APP/PS1dE9 mice and non-human primate model. In the J20 model, hippocampal plaque load showed a significant negative correlation with DNA methylation in the DG, and with the ratio a negative correlation in the DG and CA3. For the APP/PS1dE9 model a negative correlation between the ratio and plaque load was observed in the CA3, as well as a negative correlation between DNA methyltransferase 3A (DNMT3A) levels and plaque load in the DG and CA3. Thus, only the J20 model showed an age-related reduction in global DNA methylation, while DNA hypermethylation was observed in the 3xTg-AD model. Given these differences between animal models, future studies are needed to further elucidate the contribution of different AD-related genetic variation to age-related epigenetic changes.

Globular adiponectin reverses osteo-sarcopenia and altered body composition in ovariectomized rats

Adiponectin regulates various metabolic processes including glucose flux, lipid breakdown and insulin response. We recently reported that adiponectin receptor1 (adipoR1) activation by a small molecule reverses osteopenia in leptin receptor deficient db/db (diabetic) mice. However, the role of adiponectin in bone metabolism under the setting of post-menopausal (estrogen-deficiency) osteopenia and associated metabolic derangements has not been studied.

Metabolic Syndrome and Bone: Pharmacologically Induced Diabetes has Deleterious Effect on Bone in Growing Obese Rats

Metabolic syndrome and osteoporosis share similar risk factors. Also, patients with diabetes have a higher risk of osteoporosis and fracture. Liver manifestations, such as non-alcoholic steatohepatitis (NASH), of metabolic syndrome are further aggravated in diabetics and often lead to liver failure. Our objective was to create a rat model of human metabolic syndrome and determine the long-term impact of early-onset T1D on bone structure and strength in obese growing rats.

Sclerostin Antibody Augments the Anabolic Bone Formation Response in a Mouse Model of Mechanical Tibial Loading

Decreased activity or expression of sclerostin, an endogenous inhibitor of Wnt/β-catenin signaling, results in increased bone formation and mass. Antibodies targeting and neutralizing sclerostin (Scl-Ab) have been shown to increase bone mass and reduce fracture risk. Sclerostin is also important in modulating the response of bone to changes in its biomechanical environment. However, the effects of Scl-Ab on mechanotransduction are unclear, and it was speculated that the loading response may be altered for individuals receiving Scl-Ab therapy.

Heterozygous deletion of both sclerostin (Sost) and connexin43 (Gja1) genes in mice is not sufficient to impair cortical bone modeling

Connexin43 (Cx43) is the main gap junction protein expressed in bone forming cells, where it modulates peak bone mass acquisition and cortical modeling. Genetic ablation of the Cx43 gene (Gja1) results in cortical expansion with accentuated periosteal bone formation associated with decreased expression of the Wnt inhibitor sclerostin.