Single cell cortical bone transcriptomics define novel osteolineage gene sets altered in chronic kidney disease

AUTHORS

Rafiou Agoro, Intawat Nookaew, Megan L. Noonan, Yamil G. Marambio, Sheng Liu, Wennan Chang1, Hongyu Gao, Lainey M. Hibbard, Corinne E. Metzger, Daniel Horan, William R. Thompson, Xiaoling Xuei, Yunlong Liu, Chi Zhang, Alexander G. Robling, Lynda F. Bonewald, Jun Wan, Kenneth E. White

ABSTRACT

Introduction: Due to a lack of spatial-temporal resolution at the single cell level, the etiologies of the bone dysfunction caused by diseases such as normal aging, osteoporosis, and the metabolic bone disease associated with chronic kidney disease (CKD) remain largely unknown.

Methods: To this end, flow cytometry and scRNAseq were performed on long bone cells from Sost-cre/Ai9+ mice, and pure osteolineage transcriptomes were identified, including novel osteocyte-specific gene sets.

Results: Clustering analysis isolated osteoblast precursors that expressed Tnc, Mmp13, and Spp1, and a mature osteoblast population defined by Smpd3, Col1a1, and Col11a1. Osteocytes were demarcated by Cd109, Ptprz1, Ramp1, Bambi, Adamts14, Spns2, Bmp2, WasI, and Phex. We validated our in vivo scRNAseq using integrative in vitro promoter occupancy via ATACseq coupled with transcriptomic analyses of a conditional, temporally differentiated MSC cell line. Further, trajectory analyses predicted osteoblast-to-osteocyte transitions via defined pathways associated with a distinct metabolic shift as determined by single-cell flux estimation analysis (scFEA). Using the adenine mouse model of CKD, at a time point prior to major skeletal alterations, we found that gene expression within all stages of the osteolineage was disturbed.

Conclusion: In sum, distinct populations of osteoblasts/osteocytes were defined at the single cell level. Using this roadmap of gene assembly, we demonstrated unrealized molecular defects across multiple bone cell populations in a mouse model of CKD, and our collective results suggest a potentially earlier and more broad bone pathology in this disease than previously recognized.

Degradation-Resistant Hypoxia Inducible Factor-2α in Murine Osteocytes Promotes a High Bone Mass Phenotype

AUTHORS

Sarah V. Mendoza MS, Deepa K. Murugesh BS, Blaine A. Christiansen PhD, Zoe O. Genetos, Gabriela G. Loots PhD, Damian C. Genetos PhD, Clare E. Yellowley PhD

ABSTRACT

Molecular oxygen levels vary during development and disease. Adaptations to decreased oxygen bioavailability (hypoxia) are mediated by hypoxia-inducible factor (HIF) transcription factors. HIFs are composed of an oxygen-dependent α subunit (HIF-α), of which there are two transcriptionally active isoforms (HIF-1α and HIF-2α), and a constitutively expressed β subunit (HIFβ). Under normoxic conditions, HIF-α is hydroxylated via prolyl hydroxylase domain protein (PHD) and targeted for degradation via von-Hippel Lindau (VHL). Under hypoxic conditions, hydroxylation via PHD is inhibited, allowing for HIF-α stabilization and induction of target transcriptional changes. Our previous studies showed that Vhl deletion in osteocytes (Dmp1-cre; Vhlf/f) resulted in HIF-α stabilization and generation of a high bone mass (HBM) phenotype. The skeletal impact of HIF-1α accumulation has been well characterized, however, the unique skeletal impacts of HIF-2α remain understudied. Because osteocytes orchestrate skeletal development and homeostasis, we investigated the role of osteocytic HIF-α isoforms in driving high bone mass phenotypes via osteocyte-specific loss- and gain of function HIF-1α and HIF-2α mutations in C57BL/6 female mice. Deletion of Hif1a or Hif2a in osteocytes showed no effect on skeletal microarchitecture. Constitutively stable, degradation-resistant HIF-2α (HIF-2α cDR), but not HIF-1α cDR, generated dramatic increases in bone mass, enhanced osteoclast activity, and expansion of metaphyseal marrow stromal tissue at the expense of hematopoietic tissue. Our studies reveal a novel influence of osteocytic HIF-2α in driving high bone mass phenotypes that can potentially be harnessed pharmacologically to improve bone mass and reduce fracture risk.

Apoptotic Vesicles Regulate Bone Metabolism via the miR1324/SNX14/SMAD1/5 Signaling Axis

AUTHORS

Yuan Zhu, Kunkun Yang, Yawen Cheng, Yaoshan Liu, Ranli Gu, Xuenan Liu, Hao Liu, Xiao Zhang, Yunsong Liu

ABSTRACT

Mesenchymal stem cells (MSCs) are widely used in the treatment of diseases. After their in vivo application, MSCs undergo apoptosis and release apoptotic vesicles (apoVs). This study investigates the role of apoVs derived from human bone marrow mesenchymal stem cells (hBMMSCs) in bone metabolism and the molecular mechanism of the observed effects. The results show that apoVs can promote osteogenesis and inhibit osteoclast formation in vitro and in vivo. ApoVs may therefore attenuate the bone loss caused by primary and secondary osteoporosis and stimulate bone regeneration in areas of bone defect. The mechanisms responsible for apoV-induced bone regeneration include the release of miR1324, which inhibit expression of the target gene Sorting Nexin 14 (SNX14) and thus activate the SMAD1/5 pathway in target cells. Given that MSC-derived apoVs are easily obtained and stored, with low risks of immunological rejection and neoplastic transformation, The findings suggest a novel therapeutic strategy to treat bone loss, including via cell-free approaches to bone tissue engineering.

Apoptotic Vesicles Regulate Bone Metabolism via the miR1324/SNX14/SMAD1/5 Signaling Axis

AUTHORS

Yuan Zhu, Kunkun Yang, Yawen Cheng, Yaoshan Liu, Ranli Gu, Xuenan Liu, Hao Liu, Xiao Zhang, Yunsong Liu

ABSTRACT

Mesenchymal stem cells (MSCs) are widely used in the treatment of diseases. After their in vivo application, MSCs undergo apoptosis and release apoptotic vesicles (apoVs). This study investigates the role of apoVs derived from human bone marrow mesenchymal stem cells (hBMMSCs) in bone metabolism and the molecular mechanism of the observed effects. The results show that apoVs can promote osteogenesis and inhibit osteoclast formation in vitro and in vivo. ApoVs may therefore attenuate the bone loss caused by primary and secondary osteoporosis and stimulate bone regeneration in areas of bone defect. The mechanisms responsible for apoV-induced bone regeneration include the release of miR1324, which inhibit expression of the target gene Sorting Nexin 14 (SNX14) and thus activate the SMAD1/5 pathway in target cells. Given that MSC-derived apoVs are easily obtained and stored, with low risks of immunological rejection and neoplastic transformation, The findings suggest a novel therapeutic strategy to treat bone loss, including via cell-free approaches to bone tissue engineering.

Inhibiting Wnt Secretion Reduces High Bone Mass Caused by Sost Deficiency or Point Mutations in Lrp5

AUTHORS

Bart Williams, Cassandra Diegel, Gabrielle Foxa, Mitchell McDonald, Zachary Madaj, Ina Kramer, Charles Moes, Sabine Guth, Jun Liu, Jennifer Harris, Michaela Kneissel

ABSTRACT

Proper regulation of Wnt signaling is critical for normal bone development and homeostasis. Mutations in several Wnt signaling components, which increase the pathway's activity in the skeleton, cause high bone mass in human patients and mouse models. Increased bone mass is often accompanied by severe headaches from increased intracranial pressure, which can lead to fatality and loss of vision or hearing due to the entrapment of cranial nerves. In addition, progressive bossing of the forehead and mandibular overgrowth occur in almost all patients. Treatments that would provide symptomatic relief in these patients are limited. Porcupine-mediated palmitoylation is necessary for Wnt secretion and binding to the Frizzled receptor. Chemical inhibition of porcupine is a highly selective inhibitor of all Wnt signaling. We treated three different mouse models of high bone mass caused by aberrant Wnt signaling: homozygosity for loss-of-function in SOST, which models Sclerosteosis, and two strains of mice carrying different point mutations in LRP5 (equivalent to human G171V and A214V) with porcupine inhibitors for 5–6 weeks. Treatment significantly reduced both trabecular and cortical bone mass in all three models. This demonstrates that porcupine inhibition is potentially therapeutic for symptomatic relief in patients who suffer from these disorders and further establishes that the continued production of Wnts is necessary for sustaining high bone mass in these models.

Lactate Mediates the Bone Anabolic Effect of High-Intensity Interval Training by Inducing Osteoblast Differentiation

AUTHORS

Zhu, Zhenglin; Chen, Yi; Zou, Jing; Gao, Shengqiang; Wu, Dandong; Li, Xuelun; Hu, Ning; Zhao, Jinzhong; Huang, Wei; Chen, Hong

ABSTRACT

Background:

High-intensity interval training (HIIT) reportedly improves bone metabolism and increases bone mineral density (BMD). The purpose of the present study was to investigate whether lactate mediates the beneficial effects of exercise on BMD, bone microarchitecture, and biomechanical properties in an established osteoporotic animal model. In addition, we hypothesized that lactate-induced bone augmentation is achieved through enhanced osteoblast differentiation and mineralization.

Methods:

A total of 50 female C57BL/6 mice were randomly allocated into 5 groups: the nonovariectomized group, the ovariectomized group (OVX), the HIIT group (OVX + HIIT), the HIIT with lactate transporter inhibition group (OVX + HIIT + INH), and the lactate subcutaneous injection group (OVX + LAC). After 7 weeks of intervention, bone mass, bone strength, and bone formation/resorption processes were evaluated via microcomputed tomography (micro-CT), biomechanical testing, histological analysis, and serum biochemical assays; in vitro studies were performed to explore the bone anabolic effect of lactate at the cellular level.

Results:

Micro-CT revealed significantly increased BMD in both the OVX + HIIT group (mean difference, 41.03 mg hydroxyapatite [HA]/cm3 [95% CI, 2.51 to 79.54 mg HA/cm3]; p = 0.029) and the OVX + LAC group (mean difference, 40.40 mg HA/cm3 [95% CI, 4.08 to 76.71 mg HA/cm3]; p = 0.031) compared with the OVX group. Biomechanical testing demonstrated significantly improved mechanical properties in those 2 groups. However, the beneficial effects of exercise on bone microstructure and biomechanics were largely abolished by blocking the lactate transporter. Notably, histological and biochemical results indicated that increased bone formation was responsible for the bone augmentation effects of HIIT and lactate. Cell culture studies showed a marked increase in the expression of osteoblastic markers with lactate treatment, which could be eliminated by blocking the lactate transporter.

Conclusions:

Lactate may have mediated the bone anabolic effect of HIIT in osteoporotic mice, which may have resulted from enhanced osteoblast differentiation and mineralization.

Clinical Relevance:

Lactate may mediate the bone anabolic effect of HIIT and serve as a potential inexpensive therapeutic strategy for bone augmentation.