β-Arrestin 2 knockout prevents bone loss in response to continuous parathyroid hormone stimulation in male and female mice

AUTHORS

Gilberto Li Feng, Marc D Grynpas & Jane Mitchell

ABSTRACT

Background

β-Arrestin 2 (β-arr2) binds activated parathyroid hormone (PTH) receptors stimulating internalization. PTH stimulates both anabolic and catabolic effect on bone depending on the way it is administered. Intermittent PTH stimulation increases trabecular bone formation in mice, but this is decreased in mice lacking β-arr 2, suggesting a role for β-arr 2 in the anabolic effects of PTH. The role of β-arr 2 in the catabolic effects of continuous PTH (cPTH) treatment is not known.

Objective

To assess the effects of cPTH administration on bone in mice lacking β-arr 2 compared to wild-type (WT).

Methods

Groups of male and female WT or β-arr2 knockout (KO) mice were administered either PTH or phosphate-buffered saline by osmotic pumps for 2 weeks. Following treatment, serum calcium and phosphate levels were measured, bone structure and mineral density were measured by microcomputed tomography, and bone cells measured by static and dynamic histomorphometry.

Results

β-arr2 KO had no effects on skeletal development in mice of either sex. PTH treatment caused hypercalcemia and hypophosphatemia and decreased trabecular and cortical bone only in male WT mice. β-arr2 KO in male mice completely abrogated the effects of PTH on bone, while in female β-arr2 KO mice, PTH treatment increased trabecular bone with no effects on cortical bone.

Conclusions

These results demonstrate a profound sex effect on skeletal responses to cPTH treatment, suggesting a protective effect of estrogen on bone loss. β-arr2 plays a role in restraining the anabolic effects of PTH in both male and female mice.

OTUB1 promotes osteoblastic bone formation through stabilizing FGFR2

AUTHORS

Qiong Zhu, Yesheng Fu, Chun-Ping Cui, Yi Ding, Zhikang Deng, Chao Ning, Fan Hu, Chen Qiu, Biyue Yu, Xuemei Zhou, Guan Yang, Jiang Peng, Weiguo Zou, Cui Hua Liu & Lingqiang Zhang

ABSTRACT

Bone homeostasis is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. Dysregulation of this process leads to multiple diseases, including osteoporosis. However, the underlying molecular mechanisms are not fully understood. Here, we show that the global and conditional osteoblast knockout of a deubiquitinase Otub1 result in low bone mass and poor bone strength due to defects in osteogenic differentiation and mineralization. Mechanistically, the stability of FGFR2, a crucial regulator of osteogenesis, is maintained by OTUB1. OTUB1 attenuates the E3 ligase SMURF1-mediated FGFR2 ubiquitination by inhibiting SMURF1’s E2 binding. In the absence of OTUB1, FGFR2 is ubiquitinated excessively by SMURF1, followed by lysosomal degradation. Consistently, adeno-associated virus serotype 9 (AAV9)-delivered FGFR2 in knee joints rescued the bone mass loss in osteoblast-specific Otub1-deleted mice. Moreover, Otub1 mRNA level was significantly downregulated in bones from osteoporotic mice, and restoring OTUB1 levels through an AAV9-delivered system in ovariectomy-induced osteoporotic mice attenuated osteopenia. Taken together, our results suggest that OTUB1 positively regulates osteogenic differentiation and mineralization in bone homeostasis by controlling FGFR2 stability, which provides an optical therapeutic strategy to alleviate osteoporosis.

Isosinensetin alleviates estrogen deficiency-induced osteoporosis via suppressing ROS-mediated NF-κB/MAPK signaling pathways

AUTHORS

Yiwu Qin, Dezhi Song, Shijie Liao, Junchun Chen, Minglian Xu, Yuangang Su, Haoyu Lian, Hui Peng, Linhua Wei, Kai Chen, Jiake Xu, Jinmin Zhao, Qian Liu

ABSTRACT

The formation of osteoclasts and their hyperactive bone resorption are related to the aggregation of intracellular reactive oxygen species (ROS). Flavonoids, derived from plant active ingredients, can alleviate the symptoms of osteoporosis (OP). Isosinensetin (Iss) is a flavonoid with antioxidant effects obtained mainly from citrus fruits, and its effect on osteoclastogenesis has not been reported. In this study, we investigated the antioxidant activity of Iss on osteoclast differentiation and function, as well as the therapeutic impact of Iss on OP. We found that Iss inhibited osteoclastogenesis and suppressed the bone resorption function of osteoclasts. Additionally, Iss reduced receptor activator of nuclear factor-κB ligand (RANKL)-induced intracellular ROS. Using quantitative real-time polymerase chain reaction and western blot, we further found that Iss inhibited osteoclast-specific genes and related proteins, while promoting the expression of antioxidant enzyme-related genes and proteins. Mechanistically, Iss reduces intracellular ROS by activating nuclear factor-erythroid 2-related factor 2 (Nrf2) and its related antioxidant enzymes and inhibits the downstream nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways of ROS, which in turn inhibits nuclear factor of activated T cells 1 (NFATc1), and ultimately inhibits osteoclastogenesis. In vivo, by micro-computed tomography (Micro-CT) assay and histological analyses, we found that Iss could reduce bone loss in ovariectomized (OVX) mice. Therefore, Iss has the potential as an OP preventative and therapeutic drug option.

Cedrol, a Ginger-derived sesquiterpineol, suppresses estrogen-deficient osteoporosis by intervening NFATc1 and reactive oxygen species

AUTHORS

Cong Xu, Shu-Qing Jin, Chen Jin, Zi-Han Dai, Yu-Hao Wu, Gao-Lu He, Hai-Wei Ma, Chao-Yi Xu, Wen-Lai Fang

ABSTRACT

Osteoporosis is a prevalent bone metabolic disease in menopause, and long-term medication is accompanied by serious side effects. Ginger, a food spice and traditional medicine with ancient history, exhibits the potential to alleviate osteoporosis in preclinical experiments, whereas its complex composition leads to ambiguous pharmacological mechanisms. The purpose of this study was to investigate the effect and mechanism of Ced in estrogen-deficient osteoporosis, a sesquiterpene alcohol recently discovered from Ginger with multiple pharmacological properties. RANKL was stimulated BMM (bone marrow macrophages) differentiation into osteoclasts in vitro. And the osteoclast activity and number were assessed by TRAcP and SEM. We found that Ced mitigated RANKL-induced osteoclastogenesis by descending the ROS content and obstructing NFATc1, NF-κB, and MAPK signaling. Also, Ced-mediated anti-osteolytic property was found in ovariectomized mice by Micro-CT scanning and histological staining. Summarily, our works demonstrated the anti-osteoporotic potential of Cedrol in Ginger for the first time, which also offered more pharmacological evidence for Ginger as food or medicine used for bone metabolic disease.

Inhibition of MicroRNA-122-5p Relieves Myocardial Ischemia-Reperfusion Injury via SOCS1

AUTHORS

Jun Zhang , Li Fu , Jing Zhang , Bo Zhou , Yanrong Tang , Zhenzhen Zhang , Tongqing Gu

ABSTRACT

Objective 

Evidence has shown that microRNA (miR)-122–5p is a diagnostic biomarker of acute myocardial infarction. Here, we aimed to uncover the functions of miR-122–5p in the pathological process of myocardial ischemia-reperfusion injury (MI/RI).

Methods 

An MI/RI model was established by left anterior descending coronary artery ligation in mice. The levels of miR-122–5p, suppressor of cytokine signaling-1 (SOCS1), phosphorylation of Janus kinase 2 (p-JAK2), and signal transducers and activators of transcription (p-STAT3) in the myocardial tissues of mice were measured. Downregulated miR-122–5p or upregulated SOCS1 recombinant adenovirus vectors were injected into mice before MI/RI modeling. The cardiac function, inflammatory response, myocardial infarction area, pathological damage, and cardiomyocyte apoptosis in the myocardial tissues of mice were evaluated. Cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) injury and cardiomyocyte biological function was tested upon transfection of miR-122–5p inhibitor. The target relation between miR-122–5p and SOCS1 was evaluated.

Results 

miR-122–5p expression and p-JAK2 and p-STAT3 expression were high, and SOCS1 expression was low in the myocardial tissues of MI/RI mice. Decreasing miR-122–5p or increasing SOCS1 expression inactivated the JAK2/STAT3 pathway to alleviate MI/RI by improving cardiac function and reducing inflammatory reaction, myocardial infarction area, pathological damage, and cardiomyocyte apoptosis in mice. Silencing of SOCS1 reversed depleted miR-122–5p-induced cardioprotection for MI/RI mice. In vitro experiments revealed that the downregulation of miR-122–5p induced proliferative, migratory, and invasive capabilities of H/R cardiomyocytes while inhibiting apoptosis. Mechanically, SOCS1 was a target gene of miR-122–5p.

Conclusion 

Our study summarizes that inhibition of miR-122–5p induces SOCS1 expression, thereby relieving MI/RI in mice.

Gulp1 deficiency augments bone mass in male mice by affecting osteoclasts due to elevated 17β-estradiol levels

AUTHORS

Soon-Young Kim, Gun-Il Park, Seung-Yoon Park, Eun-Hye Lee, Hyuck Choi, Jeong-Tae Koh, Soyun Han, Man Ho Choi, Eui Kyun Park, In-San Kim, Jung-Eun Kim

ABSTRACT

The engulfment adaptor phosphotyrosine-binding domain containing 1 (GULP1) is an adaptor protein involved in the engulfment of apoptotic cells via phagocytosis. Gulp1 was first found to promote the phagocytosis of apoptotic cells by macrophages, and its role in various tissues, including neurons and ovaries, has been well studied. However, the expression and function of GULP1 in bone tissue are poorly understood. Consequently, to determine whether GULP1 plays a role in the regulation of bone remodeling in vitro and in vivo, we generated Gulp1 knockout (KO) mice. Gulp1 was expressed in bone tissue, mainly in osteoblasts, while its expression is very low in osteoclasts. Microcomputed tomography and histomorphometry analysis in 8-week-old male Gulp1 KO mice revealed a high bone mass in comparison with male wild-type (WT) mice. This was a result of decreased osteoclast differentiation and function in vivo and in vitro as confirmed by a reduced actin ring and microtubule formation in osteoclasts. Gas chromatography-mass spectrometry analysis further showed that both 17β-estradiol (E2) and 2-hydroxyestradiol levels, and the E2/testosterone metabolic ratio, reflecting aromatase activity, were also higher in the bone marrow of male Gulp1 KO mice than in male WT mice. Consistent with mass spectrometry analysis, aromatase enzymatic activity was significantly higher in the bone marrow of male Gulp1 KO mice. Altogether, our results suggest that GULP1 deficiency decreases the differentiation and function of osteoclasts themselves and increases sex steroid hormone-mediated inhibition of osteoclast differentiation and function, rather than affecting osteoblasts, resulting in a high bone mass in male mice. To the best of our knowledge, this is the first study to explore the direct and indirect roles of GULP1 in bone remodeling, providing new insights into its regulation.