The BIOQUANT OSTEO software enables cutting-edge bone biology research in animal models and human biopsy. It supports both high-throughput automation and precise manual interaction for ASBMR standard bone histomorphometry in digital histology and microCT. Unique tools simplify skeletal phenotyping, characterize arthritis models, help quantify cancer metastasis, measure chondrocyte proliferation, aid in forensic anthropology, and quantify implant osseointegration.


Latest BIOQUANT OSTEO Citation

  • RAP-011 augments callus formation in closed fractures in rats AuthorsAlyson Morse, Tegan Cheng, Lauren Peacock, Kathy Mikulec, David Little, and Aaron SchindelerAbstractACE-011 is a bone anabolic agent generated by fusing the extracellular domain of the Activin Type 2A receptor (ActRIIA) to an IgG-Fc. The orthopedic utility of ACE-011 was investigated using a murine analogue, RAP-011. Initially, a rat closed fracture model was tested using bi-weekly (biw) 10 mg/kg RAP-011. RAP-011 significantly increased callus length and callus bone volume (BV, +43% at 6w, p < 0.01). The polar moment of inertia was calculated to be substantively increased (+80%, p < 0.01), however mechanical bending tests showed a more modest increase in maximum load to failure (+24%, p < 0.05 ...
    Posted Jul 22, 2015, 8:56 AM by David Bishop
Showing posts 1 - 1 of 546. View more »
Browse all recent BIOQUANT OSTEO citations...


The BIOQUANT LIFE SCIENCE software enables cutting edge bioscience research in animal models and human biopsy. It supports high-throughput immunofluorescence and immunohistochemistry, stereology, densitometry, and 3D modeling. Primary applications include developmental neuroscience, traumatic brain/spinal cord injury, glaucoma, eye-movement disorders, cardiovascular disease and muscle disorders.

Learn more about BIOQUANT LIFE SCIENCE...



  • Fibulin-4 E57K Knock-in Mice Recapitulate Cutaneous, Vascular and Skeletal Defects of Recessive Cutis Laxa 1B with both Elastic Fiber and Collagen Fibril Abnormalities AuthorsOlga Igoucheva, Vitali Alexeev, Carmen M. Halabi, Sheila M. Adams, Ivan Stoilov, Takako Sasaki, Machiko Arita, Adele Donahue, Robert P. Mecham, David E. Birk and Mon-Li ChuAbstractFibulin-4 is an extracellular matrix protein essential for elastic fiber formation. Frameshift and missense mutations in the fibulin-4 gene (EFEMP2/FBLN4) cause autosomal recessive cutis laxa (ARCL) 1B, characterized by loose skin, aortic aneurysm, arterial tortuosity, lung emphysema and skeletal abnormalities. Homozygous missense mutations in FBLN4 are a prevalent cause of ARCL 1B. Here we generated a knock-in mouse strain bearing a recurrent fibulin-4 E57K homozygous missense mutation. The mutant mice survived into adulthood and displayed abnormalities in multiple organ systems, including loose skin, bent forelimb ...
    Posted Jul 22, 2015, 9:10 AM by David Bishop
Showing posts 1 - 1 of 220. View more »
You must be logged in to add gadgets that are only visible to you