spinal injury

A moderate spinal contusion injury in rats alters bone turnover both below and above the level of injury with sex-based differences apparent in long-term recovery

AUTHORS

Corinne E. Metzger, Robert C. Moore, Alexander S. Pirkle, Landon Y. Tak, Josephina Rau, Jessica A. Bryan, Alexander Stefanov, Matthew R. Allen, Michelle A. Hook

ABSTRACT

Spinal cord injury (SCI) leads to significant sublesional bone loss and high fracture rates. While loss of mechanical loading plays a significant role in SCI-induced bone loss, animal studies have demonstrated mechanical loading alone does not fully account for loss of bone following SCI. Indeed, we have shown that bone loss occurs below the level of an incomplete moderate contusion SCI, despite the resumption of weight-bearing and stepping. As systemic factors could also impact bone after SCI, bone alterations may also be present in bone sites above the level of injury. To examine this, we assessed bone microarchitecture and bone turnover in the supralesional humerus in male and female rats at two different ages following a moderate contusion injury in both sub-chronic (30 days) and chronic (180 days) time points after injury. At the 30-day timepoint, we found that both young and adult male SCI rats had decrements in trabecular bone volume at the supralesional proximal humerus (PH), while female SCI rats were not different from age-matched shams. At the 180-day timepoint, there were no statistical differences between SCI and sham groups, irrespective of age or sex, at the supralesional proximal humerus. At the 30-day timepoint, all SCI rats had lower BFR and higher osteoclast-covered trabecular surfaces in the proximal humerus compared to age-matched sham groups generally matching the pattern of SCI-induced changes in bone turnover seen in the sublesional proximal tibia. However, at the 180-day timepoint, only male SCI rats had lower BFR at the supralesional proximal humerus while female SCI rats had higher or no different BFR than their age-matched counterparts. Overall, this preclinical study demonstrates that a moderate contusion SCI leads to alterations in bone turnover above the level of injury within 30-days of injury; however male SCI rats maintained lower BFR in the supralesional humerus into long-term recovery. These data further highlight that bone loss after SCI is not driven solely by disuse. Additionally, these data allude to potential systemic factors exerting influence on bone following SCI and highlight the need to consider treatments for SCI-induced bone loss that impact both sublesional and systemic factors.

The alarmin interleukin-1α triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury

AUTHORS

Floriane Bretheau, Adrian Castellanos-Molina, Benoit Mailhot, Maxime Kusik, Dominic Belanger, Martine Lessard, Nicolas Vallières, Xiaoyu Liu, Ning Quan, Steve Lacroix

ABSTRACT

Spinal cord injury (SCI) triggers neuroinflammation, and subsequently secondary degeneration and oligodendrocyte (OL) death. We report that the alarmin interleukin (IL)-1α is released by damaged microglia after SCI. Intra-cisterna magna injection of IL-1α in mice rapidly induced neutrophil infiltration and OL death throughout the spinal cord, mimicking what is seen at sites of SCI. These effects were abolished by co-treatment with the IL-1R1 antagonist anakinra, as well as in IL-1R1-knockout mice which showed enhanced locomotor recovery after SCI. Conditional restoration of IL-1R1 expression in astrocytes or endothelial cells (ECs), but not in OLs or microglia, restored IL-1α-induced effects, while astrocyte- or EC-specific Il1r1 deletion reduced OL loss. Conditioned medium derived from IL-1α-stimulated astrocytes is toxic for OLs; further, IL-1α-stimulated astrocytes generate reactive oxygen species (ROS) and blocking ROS production in IL-1α-treated or SCI mice prevented OL loss. Thus, after SCI, microglia release IL-1α, which induces astrocyte- and EC-mediated OL degeneration.

Increased vascularization promotes functional recovery in the transected spinal cord rats by implanted vascular endothelial growth factor-targeting collagen scaffold

Spinal cord injury (SCI) is global health concern. The effective strategies for SCI are relevant to the improvement on nerve regeneration microenvironment. Vascular endothelial growth factor (VEGF) is an important cytokine for inducing angiogenesis and accelerating nerve system function recovery from injury. We proposed that VEGF could improve nerve regeneration in SCI.

Treatment with hydrogen sulfide attenuates sublesional skeletal deterioration following motor complete spinal cord injury in rats

Treatment with hydrogen sulfide mitigates spinal cord injury-induced sublesional bone loss, possibly through abating oxidative stress, suppressing MMP activity, and activating Wnt/β-catenin signaling. Spinal cord injury (SCI)-induced sublesional bone loss represents the most severe osteoporosis and is resistant to available treatments to data.

A comprehensive study of long-term skeletal changes after spinal cord injury in adult rats

Authors

Tiao Lin, Wei Tong, Abhishek Chandra, Shao-Yun Hsu, Haoruo Jia, Ji Zhu, Wei-Ju Tseng, Michael A Levine, Yejia Zhang, Shi-Gui Yan, X Sherry Liu, Dongming Sun, Wise Young & Ling Qin

Abstract

Spinal cord injury (SCI)-induced bone loss represents the most severe osteoporosis with no effective treatment. Past animal studies have focused primarily on long bones at the acute stage using adolescent rodents. To mimic chronic SCI in human patients, we performed a comprehensive analysis of long-term structural and mechanical changes in axial and appendicular bones in adult rats after SCI. In this experiment, 4-month-old Fischer 344 male rats received a clinically relevant T13 contusion injury. Sixteen weeks later, sublesional femurs, tibiae, and L4 vertebrae, supralesional humeri, and blood were collected from these rats and additional non-surgery rats for micro-computed tomography (µCT), micro-finite element, histology, and serum biochemical analyses. At trabecular sites, extreme losses of bone structure and mechanical competence were detected in the metaphysis of sublesional long bones after SCI, while the subchondral part of the same bones showed much milder damage. Marked reductions in bone mass and strength were also observed in sublesional L4 vertebrae but not in supralesional humeri. At cortical sites, SCI induced structural and strength damage in both sub- and supralesional long bones. These changes were accompanied by diminished osteoblast number and activity and increased osteoclast number and activity. Taken together, our study revealed site-specific effects of SCI on bone and demonstrated sustained inhibition of bone formation and elevation of bone resorption at the chronic stage of SCI.

Link to Article

http://dx.doi.org/10.1038%2Fboneres.2015.28

Treatment with curcumin alleviates sublesional bone loss following spinal cord injury in rats

Authors

Xiaobin Yang, Baorong He, Peng Liu, Liang Yan, Ming Yang, Dichen Li

Abstract

This work aimed to investigate the therapeutic effect of curcumin on sublesional bone loss induced by spinal cord injury (SCI) in rats. SCI model in this work was generated in rats by surgical transaction of the cord at the T10–12 level. After the surgery, animals were treated with curcumin (110 mg/kg body mass/day, via oral gavages) for 2 weeks. Treatment of SCI rats with curcumin prevented the reduction of bone mass in tibiae and femurs, preserved bone microstructure including trabecular bone volume fraction, trabecular number, and trabecular thickness in proximal tibiae, and preserved mechanical properties of femoral midshaft. Treatment of SCI rats with curcumin increased osteoblast surface and reduced osteoclast surface in proximal tibiae. Treatment of SCI rats with curcumin increased osteocalcin mRNA expression and reduced mRNA levels of tartrate-resistant acid phosphatase and mRNA ratio of receptor activator of NF-κB ligand/osteoprotegerin in distal femurs. Treatment of SCI rats with curcumin reduced serum and femoral levels of thiobarbituric acid reactive substances. Treatment of SCI rats with curcumin had no significant effect on serum 25(OH)D, but enhanced mRNA and protein expression of vitamin D receptor (VDR) in distal femurs. Treatment of SCI rats with curcumin enhanced mRNA levels of Wnt3a, Lrp5, and ctnnb1 and upregulated protein expression of β-catenin in distal femurs. In conclusions, treatment with curcumin abated oxidative stress, activated VDR, and enhanced Wnt/β-catenin pathway, which might explain its beneficial effect against sublesional bone loss following SCI in rats, at least in part.

Link to Article

http://dx.doi.org/10.1016/j.ejphar.2015.08.036