teeth

AAV1.tMCK.NT-3 gene therapy improves phenotype in Sh3tc2−/− mouse model of Charcot–Marie–Tooth Type 4C

AUTHORS

Burcak Ozes , Lingying Tong , Kyle Moss , Morgan Myers , Lilye Morrison , Zayed Attia , Zarife Sahenk

ABSTRACT

Charcot–Marie–Tooth Type 4C (CMT4C) is associated with mutations in the SH3 domain and tetratricopeptide repeats 2 (SH3TC2) gene, primarily expressed in Schwann cells (SCs). Neurotrophin-3 (NT-3) is an important autocrine factor for SC survival and differentiation, and it stimulates neurite outgrowth and myelination. In this study, scAAV1.tMCK.NT-3 was delivered intramuscularly to 4-week-old Sh3tc2−/− mice, a model for CMT4C, and treatment efficacy was assessed at 6-month post-gene delivery. Efficient transgene production was verified with the detection of NT-3 in serum from the treated cohort. NT-3 gene therapy improved functional and electrophysiological outcomes including rotarod, grip strength and nerve conduction velocity. Qualitative and quantitative histopathological studies showed that hypomyelination of peripheral nerves and denervated status of neuromuscular junctions at lumbrical muscles were also improved in the NT-3-treated mice. Morphometric analysis in mid-sciatic and tibial nerves showed treatment-induced distally prominent regenerative activity in the nerve and an increase in the estimated SC density. This indicates that SC proliferation and differentiation, including the promyelination stage, are normal in the Sh3tc2−/− mice, consistent with the previous findings that Sh3tc2 is not involved in the early stages of myelination. Moreover, in size distribution histograms, the number of myelinated axons within the 3- to 6-µm diameter range increased, suggesting that treatment resulted in continuous radial growth of regenerating axons over time. In conclusion, this study demonstrates the efficacy of AAV1.NT-3 gene therapy in the Sh3tc2−/− mouse model of CMT4C, the most common recessively inherited demyelinating CMT subtype.

Deficiency of Trps1 in Cementoblasts Impairs Cementogenesis and Tooth Root Formation

AUTHORS

Kaoru Fujikawa, Mairobys Socorro, Lyudmila Lukashova, Priyanka Hoskere, Paulina Keskinidis, Kostas Verdelis, Dobrawa Napierala

ABSTRACT

Cementum is the least studied of all mineralized tissues and little is known about mechanisms regulating its formation. Therefore, the goal of this study was to provide new insights into the transcriptional regulation of cementum formation by determining the consequences of the deficiency of the Trps1 transcription factor in cementoblasts. We used Trps1Col1a1 cKO (2.3Co1a1-CreERT2;Trps1fl/fl) mice, in which Trps1 is deleted in cementoblasts. Micro-computed tomography analyses of molars of 4-week-old males and females demonstrated significantly shorter roots with thinner mineralized tissues (root dentin and cementum) in Trps1Col1a1 cKO compared to WT mice. Semi-quantitative histological analyses revealed a significantly reduced area of cellular cementum and localized deficiencies of acellular cementum in Trps1Col1a1 cKO mice. Immunohistochemical analyses revealed clustering of cementoblasts at the apex of roots, and intermittent absence of cementoblasts on Trps1Col1a1 cKO cementum surfaces. Fewer Osterix-positive cells adjacent to cellular cementum were also detected in Trps1Col1a1 cKO compared to WT mice. Decreased levels of tissue-nonspecific alkaline phosphatase (TNAP), an enzyme required for proper cementogenesis, were apparent in cementum, periodontal ligament, and alveolar bone of Trps1Col1a1 cKO. There were no apparent differences in levels of bone sialoprotein (Bsp) in cementum. Quantitative analyses of picrosirius red-stained periodontal ligament revealed shorter and disorganized collagen fibers in Trps1Col1a1 cKO mice demonstrating impaired periodontal structure. In conclusion, this study has identified Trps1 transcription factor as one of the important regulators of cellular and acellular cementum formation. Furthermore, this study suggests that Trps1 supports the function of cementoblasts by upregulating expression of the major proteins required for cementogenesis, such as Osterix and TNAP.

Apoptotic Vesicles Derived from Dental Pulp Stem Cells Promote Bone Formation through the ERK1/2 Signaling Pathway

AUTHORS

Kunkun Yang, Yuan Zhu, Yuzi Shao, Yuhe Jiang, Lei Zhu, Yaoshan Liu, Ping Zhang, Yunsong Liu, Xiao Zhang, Yongsheng Zhou

ABSTRACT

Osteoporosis is a common degenerative bone disease. The treatment of osteoporosis remains a clinical challenge in light of the increasing aging population. Human dental pulp stem cells (DPSCs), a type of mesenchymal stem cells (MSCs), are easy to obtain and have a high proliferation ability, playing an important role in the treatment of osteoporosis. However, MSCs undergo apoptosis within a short time when used in vivo; therefore, apoptotic vesicles (apoVs) have attracted increasing attention. Currently, the osteogenic effect of DPSC-derived apoVs is unknown; therefore, this study aimed to determine the role of DPSC-derived apoVs and their potential mechanisms in bone regeneration. We found that MSCs could take up DPSC-derived apoVs, which then promoted MSC osteogenesis in vitro. Moreover, apoVs could increase the trabecular bone count and bone mineral density in the mouse osteoporosis model and could promote bone formation in rat cranial defects in vivo. Mechanistically, apoVs promoted MSC osteogenesis by activating the extracellular regulated kinase (ERK)1/2 signaling pathway. Consequently, we propose a novel therapy comprising DPSC-derived apoVs, representing a promising approach to treat bone loss and bone defects.

Near-infrared light responsive gold nanoparticles coating endows polyetheretherketone with enhanced osseointegration and antibacterial properties

AUTHORS

Xinxin Zhan, Jianglong Yan, Dong Xiang, Hao Tang, Lulu Cao, Yufeng Zheng, Hong Lin, Dandan Xia

ABSTRACT

Polyetheretherketone (PEEK) is considered as a promising dental implant material owing to its excellent physicochemical and mechanical properties. However, its wide range of applications is limited by its biologically inert nature. In this study, a near-infrared (NIR) light responsive bioactive coating with gold nanoparticles (AuNPs) and metronidazole adhered to the PEEK surface via dopamine polymerization. Compared to pure PEEK, the hydrophilicity of the treated PEEK surface was significantly improved. In addition, under NIR light, the surface coating exhibited photothermal conversion effect, and gold nanoparticles and the antibiotic can be released from the coating. This improved the antibacterial properties of PEEK materials. Moreover, the coating was more conducive to the early adhesion of bone mesenchymal stem cells. The results of in vitro and in vivo osteogenic activity studies showed that the developed coating promoted osseointegration of PEEK implants, and NIR light irradiation further improved the antibacterial ability and osteogenic activity of PEEK implants. Through RNA sequencing, the potential underlying mechanism of promoting bone formation of the AuNPs coating combined metronidazole was interpreted. In summary, the developed coating is a potential surface treatment strategy that endows PEEK with enhanced osseointegration and antibacterial properties.

Microcin C7-laden modified gelatin based biocomposite hydrogel for the treatment of periodontitis

AUTHORS

Shuo Zhou, Di Miao, Jinpeng Wen, Qianqian Zhang, Datao Hu, Na Liu, Jinyang Li, Yifan Zhang, Ke Wang, Yue Chen

ABSTRACT

Periodontitis is an oral disease with the highest incidence globally, and plaque control is the key to its treatment. In this study, Microcin C7 was used to treat periodontitis, and a novel injectable temperature-sensitive sustained-release hydrogel was synthesized as an environmentally sensitive carrier for drug delivery. First, modified gelatin was formed from gelatin and glycidyl methacrylate. Then, Microcin C7-laden hydrogel was formed from cross-linking with double bonds between modified gelatin, N-isopropyl acrylamide, and 2-Methacryloyloxyethyl phosphorylcholine through radical polymerization, and the model drug Microcin C7 was loaded by electrostatic adsorption. The hydrogel has good temperature sensitivity, self-healing, and injectable properties. In vitro results showed that the hydrogel could slowly and continuously release Microcin C7 with good biocompatibility and biodegradability, with a remarkable antibacterial effect on Porphyromonas gingivalis. It also confirmed the antibacterial and anti-inflammatory effects of Microcin C7-laden hydrogel in a periodontitis rat model. The results showed that Microcin C7-laden hydrogel is a promising candidate for local drug delivery systems in periodontitis.

The effect of low-frequency high-intensity ultrasound combined with aspirin on tooth movement in rats

AUTHORS

Jiao Xin, Xinxin Zhan, Fu Zheng, Huazhi Li, Yixiang Wang, Cuiying Li & Jiuhui Jiang

ABSTRACT

Background

Given the difficulties or incapacity of teeth movement in orthodontic treatment, the ways to speed tooth movement must be investigated. Besides, nonsteroidal anti-inflammatory drugs (NSAIDs) were utilized to treat pain caused by tooth movement during orthodontic treatment. The purpose of this study is to examine the impact of aspirin and low-frequency high-intensity ultrasound (LFHIU) on rat orthodontic tooth movement in rats.

Methods

Thirty-six male Sprague-Dawley rats were divided into three groups: orthodontic (O), ultrasound-treated orthodontic (OU), and ultrasound-treated orthodontic with aspirin gavage (OUA) group. In the OU and OUA group, LFHIU (44 W/cm2, 28 kHz) was applied to the buccal side of the maxillary first molar alveolar bone for 10 s every day. In the OUA group, aspirin was given by gavage every day. The rats were sacrificed on days 1, 3, 7, and 14.

Results

After ultrasonic treatment, the speed of tooth movement was increased by about 1.5 times. And the number of osteoclasts considerably increased by about 2 times. However, they decreased slightly after aspirin gavage. By Applying ultrasound therapy, Receptor Activator for Nuclear Factor-κ B Ligand (RANKL) levels in periodontal tissue were elevated. Aspirin was able to reduce these increases. Results from Micro Computed Tomography (Micro-CT) revealed that bone mineral density decreased by about 1/5 after ultrasound treatment on the compression side. The rate of bone mineral apposition indicated that bone was forming under tension, and that of the OU group increased by about 1.3 times that O group.

Conclusions

Although aspirin slowed this trend, LFHIU still enhanced overall tooth mobility in orthodontic treatment.