Bone

A novel mouse model for familial hypocalciuric hypercalcemia (FHH1) reveals PTH-dependent and independent CaSR defects

AUTHORS

Catharina J. Küng, Arezoo Daryadel, Rocio Fuente, Betül Haykir, Martin Hrabĕ de Angelis, Nati Hernando, Isabel Rubio-Aliaga & Carsten A. Wagner

ABSTRACT

The Calcium-sensing receptor (CaSR) senses extracellular calcium, regulates parathyroid hormone (PTH) secretion, and has additional functions in various organs related to systemic and local calcium and mineral homeostasis. Familial hypocalciuric hypercalcemia type I (FHH1) is caused by heterozygous loss-of-function mutations in the CaSR gene, and is characterized by the combination of hypercalcemia, hypocalciuria, normal to elevated PTH, and facultatively hypermagnesemia and mild bone mineralization defects. To date, only heterozygous Casr null mice have been available as model for FHH1. Here we present a novel mouse FHH1 model identified in a large ENU-screen that carries an c.2579 T > A (p.Ile859Asn) variant in the Casr gene (CasrBCH002 mice). In order to dissect direct effects of the genetic variant from PTH-dependent effects, we crossed CasrBCH002 mice with PTH deficient mice. Heterozygous CasrBCH002 mice were fertile, had normal growth and body weight, were hypercalcemic and hypermagnesemic with inappropriately normal PTH levels and urinary calcium excretion replicating some features of FHH1. Hypercalcemia and hypermagnesemia were independent from PTH and correlated with higher expression of claudin 16 and 19 in kidneys. Likewise, reduced expression of the renal TRPM6 channel in CasrBCH002 mice was not dependent on PTH. In bone, mutations in Casr rescued the bone phenotype observed in Pth null mice by increasing osteoclast numbers and improving the columnar pattern of chondrocytes in the growth zone. In summary, CasrBCH002 mice represent a new model to study FHH1 and our results indicate that only a part of the phenotype is driven by PTH.

Musculoskeletal Health Worsened from Carnitine Supplementation and Not Impacted by a Novel Individualized Treadmill Training Protocol

AUTHORS

Ashley D. Troutman, Shruthi Srinivasan, Corinne E. Metzger, Paul B. Fallen, Neal Chen, Kalisha D. O'Neill, Matthew R. Allen, Annabel Biruete, Sharon M. Moe, Keith G. Avin

ABSTRACT

Introduction: Chronic kidney disease (CKD) negatively affects musculoskeletal health, leading to reduced mobility, and quality of life. In healthy populations, carnitine supplementation and aerobic exercise have been reported to improve musculoskeletal health. However, there are inconclusive results regarding their effectiveness and safety in CKD. We hypothesized that carnitine supplementation and individualized treadmill exercise would improve musculoskeletal health in CKD. Methods: We used a spontaneously progressive CKD rat model (Cy/+ rat) (n = 11–12/gr): (1) Cy/+ (CKD-Ctrl), (2) CKD-carnitine (CKD-Carn), and (3) CKD-treadmill (CKD-TM). Carnitine (250 mg/kg) was injected daily for 10 weeks. Rats in the treadmill group ran 4 days/week on a 5° incline for 10 weeks progressing from 30 min/day for week one to 40 min/day for week two to 50 min/day for the remaining 8 weeks. At 32 weeks of age, we assessed overall cardiopulmonary fitness, muscle function, bone histology and architecture, and kidney function. Data were analyzed by one-way ANOVA with Tukey’s multiple comparisons tests. Results: Moderate to severe CKD was confirmed by biochemistries for blood urea nitrogen (mean 43 ± 5 mg/dL CKD-Ctrl), phosphorus (mean 8 ± 1 mg/dL CKD-Ctrl), parathyroid hormone (PTH; mean 625 ± 185 pg/mL CKD-Ctrl), and serum creatinine (mean 1.1 ± 0.2 mg/mL CKD-Ctrl). Carnitine worsened phosphorous (mean 11 ± 3 mg/dL CKD-Carn; p < 0.0001), PTH (mean 1,738 ± 1,233 pg/mL CKD-Carn; p < 0.0001), creatinine (mean 1 ± 0.3 mg/dL CKD-Carn; p < 0.0001), cortical bone thickness (mean 0.5 ± 0.1 mm CKD-Ctrl, 0.4 ± 0.1 mm CKD-Carn; p < 0.05). Treadmill running significantly improves maximal aerobic capacity when compared to CKD-Ctrl (mean 14 ± 2 min CKD-TM, 10 ± 2 min CKD-Ctrl; p < 0.01). Conclusion: Carnitine supplementation worsened CKD progression, mineral metabolism biochemistries, and cortical porosity and did not have an impact on physical function. Individualized treadmill running improved maximal aerobic capacity but did not have an impact on CKD progression or bone properties. Future studies should seek to better understand carnitine doses in conditions of compromised renal function to prevent toxicity which may result from elevated carnitine levels and to optimize exercise prescriptions for musculoskeletal health.

BAP1 promotes osteoclast function by metabolic reprogramming

AUTHORS

Nidhi Rohatgi, Wei Zou, Yongjia Li, Kevin Cho, Patrick L. Collins, Eric Tycksen, Gaurav Pandey, Carl J. DeSelm, Gary J. Patti, Anwesha Dey & Steven L. Teitelbaum

ABSTRACT

Treatment of osteoporosis commonly diminishes osteoclast number which suppresses bone formation thus compromising fracture prevention. Bone formation is not suppressed, however, when bone degradation is reduced by retarding osteoclast functional resorptive capacity, rather than differentiation. We find deletion of deubiquitinase, BRCA1-associated protein 1 (Bap1), in myeloid cells (Bap1∆LysM), arrests osteoclast function but not formation. Bap1∆LysM osteoclasts fail to organize their cytoskeleton which is essential for bone degradation consequently increasing bone mass in both male and female mice. The deubiquitinase activity of BAP1 modifies osteoclast function by metabolic reprogramming. Bap1 deficient osteoclast upregulate the cystine transporter, Slc7a11, by enhanced H2Aub occupancy of its promoter. SLC7A11 controls cellular reactive oxygen species levels and redirects the mitochondrial metabolites away from the tricarboxylic acid cycle, both being necessary for osteoclast function. Thus, in osteoclasts BAP1 appears to regulate the epigenetic-metabolic axis and is a potential target to reduce bone degradation while maintaining osteogenesis in osteoporotic patients.

Local BMP2 hydrogel therapy for robust bone regeneration in a porcine model of Legg-Calvé-Perthes disease

AUTHORS

Chi Ma, Min Sung Park, Felipe Alves do Monte, Vishal Gokani, Olumide O. Aruwajoye, Yinshi Ren, Xiaohua Liu & Harry K. W. Kim

ABSTRACT

Legg-Calvé-Perthes disease is juvenile idiopathic osteonecrosis of the femoral head (ONFH) that has no effective clinical treatment. Previously, local injection of bone morphogenetic protein-2 (BMP2) for ONFH treatment showed a heterogeneous bone repair and a high incidence of heterotopic ossification (HO) due to the BMP2 leakage. Here, we developed a BMP2-hydrogel treatment via a transphyseal bone wash and subsequential injection of BMP2-loaded hydrogel. In vitro studies showed that a hydrogel of gelatin-heparin-tyramine retained the BMP2 for four weeks. The injection of the hydrogel can efficiently prevent leakage. With the bone wash, the injected hydrogel had a broad distribution in the head. In vivo studies on pigs revealed that the BMP2-hydrogel treatment produced a homogeneous bone regeneration without HO. It preserved the subchondral contour and restored the subchondral endochondral ossification, although it increased growth plate fusions. In summary, the study demonstrated a promising BMP2-hydrogel treatment for ONFH treatment, especially for teenagers.

Efficacy of zoledronic acid for the elimination of disseminated tumor cells in a clinically relevant, spontaneously metastatic prostate cancer xenograft model

AUTHORS

Lukas Clemens Böckelmann, Vera Freytag, Ann-Kristin Ahlers, Hanna Maar, Tobias Gosau, Anke Baranowsky, Rüdiger Schmitz, Klaus Pantel, Udo Schumacher, Marie-Therese Haider, Tobias Lange

ABSTRACT

Bone metastases develop in >90 % of patients with castration-resistant prostate cancer (PCa) through complex interactions between the bone microenvironment and tumor cells. Previous androgen-deprivation therapy (ADT), which is known to cause bone loss, as well as anti-resorptive agents such as zoledronic acid (ZA), used to prevent skeletal complications, may influence these interactions and thereby the growth of disseminated tumor cells (DTC) in the bone marrow (BM). Here, a spontaneously metastatic xenograft tumor model of human PCa was further optimized to mimic the common clinical situation of ADT (castration) combined with primary tumor resection in vivo. The effects of these interventions, alone or in combination with ZA treatment, on tumor cell dissemination to the BM and other distant sites were analyzed. Metastatic burden was quantified by human-specific Alu-qPCR, bioluminescence imaging (BLI), and immunohistochemistry. Further, bone remodeling was assessed by static histomorphometry and serum parameters. Initial comparative analysis between NSG and SCID mice showed that spontaneous systemic dissemination of subcutaneous PC-3 xenograft tumors was considerably enhanced in NSG mice. Primary tumor resection and thereby prolonged observational periods resulted in a higher overall metastatic cell load at necropsy and tumor growth alone caused significant bone loss, which was further augmented by surgical castration. In addition, castrated mice showed a strong trend towards higher bone metastasis loads. Weekly treatment of mice with ZA completely prevented castration- and tumor-induced bone loss but had no effect on bone metastasis burden. Conversely, the total lung metastasis load as determined by BLI was significantly decreased upon ZA treatment. These findings provide a basis for future research on the role of ZA not only in preventing skeletal complications but also in reducing metastasis to other organs.

Sugar transporter Slc37a2 regulates bone metabolism in mice via a tubular lysosomal network in osteoclasts

AUTHORS

Pei Ying Ng, Amy B. P. Ribet, Qiang Guo, Benjamin H. Mullin, Jamie W. Y. Tan, Euphemie Landao-Bassonga, Sébastien Stephens, Kai Chen, Jinbo Yuan, Laila Abudulai, Maike Bollen, Edward T. T. T. Nguyen, Jasreen Kular, John M. Papadimitriou, Kent Søe, Rohan D. Teasdale, Jiake Xu, Robert G. Parton, Hiroshi Takayanagi & Nathan J. Pavlos

ABSTRACT

Osteoclasts are giant bone-digesting cells that harbor specialized lysosome-related organelles termed secretory lysosomes (SLs). SLs store cathepsin K and serve as a membrane precursor to the ruffled border, the osteoclast’s ‘resorptive apparatus’. Yet, the molecular composition and spatiotemporal organization of SLs remains incompletely understood. Here, using organelle-resolution proteomics, we identify member a2 of the solute carrier 37 family (Slc37a2) as a SL sugar transporter. We demonstrate in mice that Slc37a2 localizes to the SL limiting membrane and that these organelles adopt a hitherto unnoticed but dynamic tubular network in living osteoclasts that is required for bone digestion. Accordingly, mice lacking Slc37a2 accrue high bone mass owing to uncoupled bone metabolism and disturbances in SL export of monosaccharide sugars, a prerequisite for SL delivery to the bone-lining osteoclast plasma membrane. Thus, Slc37a2 is a physiological component of the osteoclast’s unique secretory organelle and a potential therapeutic target for metabolic bone diseases.