Macrophage

Calycosin alleviates titanium particle-induced osteolysis by modulating macrophage polarization and subsequent osteogenic differentiation

AUTHORS

Hui Jiang, Yang Wang, Zhao Tang, Xianjiang Peng, Chan Li, Yangjie Dang, Rui Ma

ABSTRACT

Periprosthetic osteolysis (PPO) caused by wear particles is one of the leading causes of implant failure after arthroplasty. Macrophage polarization imbalance and subsequent osteogenic inhibition play a crucial role in PPO. Calycosin (CA) is a compound with anti-inflammatory and osteoprotective properties. This study aimed to evaluate the effects of CA on titanium (Ti) particle-induced osteolysis, Ti particle-induced macrophage polarization and subsequent osteogenic deficits, and explore the associated signalling pathways in a Ti particle-stimulated calvarial osteolysis mouse model using micro-CT, ELISA, qRT-PCR, immunofluorescence and western blot techniques. The results showed that CA alleviated inflammation, osteogenic inhibition and osteolysis in the Ti particle-induced calvarial osteolysis mouse model in vivo. In vitro experiments showed that CA suppressed Ti-induced M1 macrophage polarization, promoted M2 macrophage polarization and ultimately enhanced osteogenic differentiation of MC3T3-E1 cells. In addition, CA alleviated osteogenic deficits by regulating macrophage polarization homeostasis via the NF-κB signalling pathway both in vivo and in vitro. All these findings suggest that CA may prove to be an effective therapeutic agent for wear particle-induced osteolysis.

A glucuronated flavone TMMG spatially targets chondrocytes to alleviate cartilage degeneration through negative regulation of IL-1β

AUTHORS

Priyanka Kothari, Geeta Dhaniya, Anirban Sardar, Shradha Sinha, Aboli Girme, Divya Rai, Kunal Chutani, Lal Hingorani, Ritu Trivedi

ABSTRACT

Chondrocytes are the only resident cell types that form the extracellular matrix of cartilage. Inflammation alters the anabolic and catabolic regulation of chondrocytes, resulting in the progression of osteoarthritis (OA). The potential of TMMG, a glucuronated flavone, was explored against the pathophysiology of OA in both in vitro and in vivo models. The effects of TMMG were evaluated on chondrocytes and the ATDC5 cell line treated with IL-1β in an established in vitro inflammatory OA model. An anterior cruciate ligament transection (ACLT) model was used to simulate post-traumatic injury in vivo. Micro-CT and histological examination were employed to examine the micro-architectural status and cartilage alteration. Further, serum biomarkers were measured using ELISA to assess OA progression. In-vitro, TMMG reduced excessive ROS generation and inhibited pro-inflammatory IL-1β secretion by mouse chondrocytes and macrophages, which contributes to OA progression. This expression pattern closely mirrored osteoclastogenesis prevention. In-vivo results show that TMMG prevented chondrocyte apoptosis and degradation of articular cartilage thickness, subchondral parameters, and elevated serum COMP, CTX-II, and IL-1β which were significantly restored in 5 and 10 mg.kg−1day−1 treated animals and comparable to the positive control Indomethacin. In addition, TMMG also improved cartilage integrity and decreased the OARSI score by maintaining chondrocyte numbers and delaying ECM degradation. These findings suggest that TMMG may be a prospective disease-modifying agent that can mitigate OA progression.