Osteoclastogenesis

Anemoside B4 attenuates RANKL-induced osteoclastogenesis by upregulating Nrf2 and dampens ovariectomy-induced bone loss

AUTHORS

Zhen Cao, Xuben Niu, Maihuan Wang, Siwang Yu, Mingkun Wang, Silong Mu, Chuan Liu, Yaxi Wang

ABSTRACT

Increased numbers and functional overactivity of osteoclasts are the pathological basis for bone loss diseases such as osteoporosis, which are characterized by cortical bone thinning, decreased trabecular bone quantity, and reduced bone mineral density. Effective inhibition of osteoclast formation and bone resorption are important means of treating such skeletal diseases. Anemoside B4 (AB4), the main active component of Pulsatilla chinensis, possesses a wide range of anti-inflammatory and immunoregulatory effects. However, its effect and mechanism in osteoclast differentiation remain unclear. In this study, we found through tartrate-resistant acidic phosphatase (TRAcP) staining and immunofluorescence staining that AB4 inhibited the differentiation, fusion, and bone-resorption functions of osteoclasts induced by receptor activator of nuclear factor κB ligand (RANKL) in vitro. Additionally, real time PCR (RT-qPCR) and western blot analysis showed AB4 downregulated the expression of osteoclast marker genes, including Nfatc1, Fos, and Ctsk, while upregulating Nrf2 expression. AB4 (5 mg/kg) alleviated bone loss in ovariectomized mice by inhibiting osteoclast formation. Furthermore, the knockout of Nrf2 weakened the inhibitory effects of AB4 on osteoclast formation and related gene expression. In summary, the results suggest AB4 can inhibit osteoclast differentiation and function by activating Nrf2 and indicate AB4 may be a candidate drug for osteoporosis.

Inhibition of KIF11 ameliorates osteoclastogenesis via regulating mTORC1-mediated NF-κB signaling

AUTHORS

Jiansen Miao, Hanbing Yao, Jian Liu, Zhixian Huang, Chengge Shi, Xinyu Lu, Junchen Jiang, Rufeng Ren, Chenyu Wang, Youjin Pan, Te Wang, Haiming Jin

ABSTRACT

Osteoporosis, characterized by over-production and activation of osteoclasts, has become a major health problem especially in elderly women. In our study, we first tested the effect of Caudatin (Cau) in osteoclastogenesis, which is separated from Cynanchum auriculatum as a species of C-21 steroidal glyosides. The results indicated that Cau suppressed osteoclastogenesis in a time- and dose-dependent manner in vitro. Mechanistically, Cau was identified to inhibit NF-κB signaling pathway via modulation of KIF11-mediated mTORC1 activity. In vivo, by establishing an ovariectomized (OVX) mouse model to mimic osteoporosis, we confirmed that Cau treatment prevented OVX-induced bone loss in mice. In conclusion, we demonstrated that Cau inhibited NF-κB signaling pathway via modulation of KIF11-mediated mTORC1 activity to suppress osteoclast differentiation in vitro as well as OVX-induced bone loss in vivo. This provides the possibility of a novel prospective drug for osteoporosis remedies.