osteoclastogenesis

Inhibition of PPP1R15A alleviates osteoporosis via suppressing RANKL-induced osteoclastogenesis

AUTHORS

Zong-bao Ding, Yan Chen, Yu-rong Zheng, Yi-yuan Wang, Wen-de Deng, Jie-huang Zheng, Qin Yang, Zi-ye Chen, Li-hong Li, Hui Jiang & Xiao-juan Li

ABSTRACT

Osteoporosis results from overactivation of osteoclasts. There are currently few drug options for treatment of this disease. Since the successful development of allosteric inhibitors, phosphatases have become attractive therapeutic targets. Protein phosphatase 1, regulatory subunit 15 A (PPP1R15A), is a stress-responsive protein, which promotes the UPR (unfolded protein response) and restores protein homeostasis. In this study we investigated the role of PPP1R15A in osteoporosis and osteoclastogenesis. Ovariectomy (OVX)-induced osteoporosis mouse model was established, osteoporosis was evaluated in the left femurs using micro-CT. RANKL-stimulated osteoclastogenesis was used as in vitro models. We showed that PPP1R15A expression was markedly increased in BMMs derived from OVX mice and during RANKL-induced osteoclastogenesis in vitro. Knockdown of PPP1R15A or application of Sephin1 (a PPP1R15A allosteric inhibitor in a phase II clinical trial) significantly inhibited osteoclastogenesis in vitro. Sephin1 (0.78, 3.125 and 12.5 μM) dose-dependently mitigated the changes in NF-κB, MAPK, and c-FOS and the subsequent nuclear factor of activated T cells 1 (NFATc1) translocation in RANKL-stimulated BMMs. Both Sephin1 and PPP1R15A knockdown increased the phosphorylated form of eukaryotic initiation factor 2α (eIF2α); knockdown of eIF2α reduced the inhibitory effects of Sephin1 on NFATc1-luc transcription and osteoclast formation. Furthermore, Sephin1 or PPP1R15A knockdown suppressed osteoclastogenesis in CD14+ monocytes from osteoporosis patients. In OVX mice, injection of Sephin1 (4, 8 mg/kg, i.p.) every two days for 6 weeks significantly inhibited bone loss, and restored bone destruction and decreased TRAP-positive cells. This study has identified PPP1R15A as a novel target for osteoclast differentiation, and genetic inhibition or allosteric inhibitors of PPP1R15A, such as Sephin1, can be used to treat osteoporosis.

Osteocyte CIITA aggravates osteolytic bone lesions in myeloma

AUTHORS

Huan Liu, Jin He, Rozita Bagheri-Yarmand, Zongwei Li, Rui Liu, Zhiming Wang, Duc-hiep Bach, Yung-hsing Huang, Pei Lin, Theresa A. Guise, Robert F. Gagel & Jing Yang

ABSTRACT

Osteolytic destruction is a hallmark of multiple myeloma, resulting from activation of osteoclast-mediated bone resorption and reduction of osteoblast-mediated bone formation. However, the molecular mechanisms underlying the differentiation and activity of osteoclasts and osteoblasts within a myelomatous microenvironment remain unclear. Here, we demonstrate that the osteocyte-expressed major histocompatibility complex class II transactivator (CIITA) contributes to myeloma-induced bone lesions. CIITA upregulates the secretion of osteolytic cytokines from osteocytes through acetylation at histone 3 lysine 14 in the promoter of TNFSF11 (encoding RANKL) and SOST (encoding sclerostin), leading to enhanced osteoclastogenesis and decreased osteoblastogenesis. In turn, myeloma cell–secreted 2-deoxy-D-ribose, the product of thymidine catalyzed by the function of thymidine phosphorylase, upregulates CIITA expression in osteocytes through the STAT1/IRF1 signaling pathway. Our work thus broadens the understanding of myeloma-induced osteolysis and indicates a potential strategy for disrupting tumor-osteocyte interaction to prevent or treat patients with myeloma bone disease.

Inhibition of myeloid PD-L1 suppresses osteoclastogenesis and cancer bone metastasis

AUTHORS

Hao Zuo & Yihong Wan

ABSTRACT

Programmed death-ligand 1 (PD-L1) is predominantly expressed in the antigen-presenting cells (APCs) that are originated and are abundant in the bone marrow. The roles of PD-L1 in bone cell differentiation and cancer bone metastasis remain unclear. Here we show that PD-L1 antibody or PD-L1 conditional knockout in the hematopoietic or myeloid lineage suppresses osteoclast differentiation in vitro and in vivo. Bone metastases of breast cancer and melanoma are diminished by PD-L1 antibody or PD-L1 deletion in the myeloid lineage. Transcriptional profiling of bone marrow cells reveals that PD-L1 deletion in the myeloid cells upregulates immune-stimulatory genes, leading to increased macrophage M1 polarization, decreased M2 polarization, enhanced IFNγ signaling, and elevated T cell recruitment and activation. All these alterations result in heightened anti-tumor immunity in the cancer microenvironment. Our findings support PD-L1 antibody as a potent therapy for bone metastasis of breast cancer and melanoma by simultaneously suppressing osteoclast and enhancing immunity.

A selected small molecule prevents inflammatory osteolysis through restraining osteoclastogenesis by modulating PTEN activity

Inflammatory osteolysis is a severe infectious bone disorder that occurs during orthopaedic surgery and is caused by disruptions in the dynamic balance of bone matrix homeostasis, which makes this condition a burden on surgical procedures. Developing novel therapeutic drugs about inhibiting excessive osteoclastogenesis acts as an efficient approach to preventing inflammatory bone destruction.

DOK3 Modulates Bone Remodeling by Negatively Regulating Osteoclastogenesis and Positively Regulating Osteoblastogenesis

Osteoclastogenesis is essential for bone remodeling and normal skeletal maintenance. Receptor activator of NF-κB ligand (RANKL) promotes osteoclast differentiation and function but requires costimulation of immunoreceptor tyrosine-based activation motif (ITAM)-coupled immunoreceptors. Triggering receptor expressed on myeloid cells-2 (TREM2) coupled to ITAM-adaptor protein DNAX activation protein 12kDA (DAP12) provides costimulation of intracellular calcium signaling during osteoclastogenesis.

RANKL coordinates multiple osteoclastogenic pathways by regulating expression of ubiquitin ligase RNF146

Bone undergoes continuous remodeling due to balanced bone formation and resorption mediated by osteoblasts and osteoclasts, respectively. Osteoclasts arise from the macrophage lineage, and their differentiation is dependent on RANKL, a member of the TNF family of cytokines.