prefrontal cortex

Prenatal protein malnutrition decreases neuron numbers in the parahippocampal region but not prefrontal cortex in adult rats

AUTHORS

A. C. Amaral, J. P. Lister, J. W. Rueckemann, M. W. Wojnarowicz, J. A. McGaughy, D. J. Mokler, J. R. Galler, D. L. Rosene, R. J. Rushmore

ABSTRACT

Objective

Prenatal protein malnutrition produces anatomical and functional changes in the developing brain that persist despite immediate postnatal nutritional rehabilitation. Brain networks of prenatally malnourished animals show diminished activation of prefrontal areas and an increased activation of hippocampal regions during an attentional task [1]. While a reduction in cell number has been documented in hippocampal subfield CA1, nothing is known about changes in neuron numbers in the prefrontal or parahippocampal cortices.

Methods

In the present study, we used unbiased stereology to investigate the effect of prenatal protein malnutrition on the neuron numbers in the medial prefrontal cortex and the cortices of the parahippocampal region that comprise the larger functional network.

Results

Results show that prenatal protein malnutrition does not cause changes in the neuronal population in the medial prefrontal cortex of adult rats, indicating that the decrease in functional activation during attentional tasks is not due to a reduction in the number of neurons. Results also show that prenatal protein malnutrition is associated with a reduction in neuron numbers in specific parahippocampal subregions: the medial entorhinal cortex and presubiculum.

Discussion

The affected regions along with CA1 comprise a tightly interconnected circuit, suggesting that prenatal malnutrition confers a vulnerability to specific hippocampal circuits. These findings are consistent with the idea that prenatal protein malnutrition produces a reorganization of structural and functional networks, which may underlie observed alterations in attentional processes and capabilities.

Impact of adolescent intermittent ethanol exposure on interneurons and their surrounding perineuronal nets in adulthood

AUTHORS

Carol A. Dannenhoffer, Alexander Gómez-A, Victoria A. Macht, Rayyanoor Jawad, E. Blake Sutherland, Ryan P. Vetreno, Fulton T. Crews, Charlotte A. Boettiger, Donita L. Robinson

ABSTRACT

Background Binge alcohol exposure during adolescence results in long-lasting alterations in brain and behavior. For example, adolescent intermittent ethanol (AIE) exposure in rodents results in long-term loss of functional connectivity among prefrontal cortex (PFC) and striatal regions as well as a variety of neurochemical, molecular, and epigenetic alterations. Interneurons in the PFC and striatum play critical roles in behavioral flexibility and functional connectivity. For example, parvalbumin (PV) interneurons are known to contribute to neural synchrony, and cholinergic interneurons contribute to strategy selection. Furthermore, extracellular perineuronal nets (PNNs) surround some interneurons, particularly PV+ interneurons, to further regulate cellular plasticity. The effect of AIE exposure on expression of these markers within the PFC is not well understood.

Methods The present study tested the hypothesis that AIE exposure reduces expression of PV+ and ChAT+ interneurons in the adult PFC and striatum and increases related expression of PNNs (marked by binding of Wisteria Floribunda agglutinin lectin; WFA) in adulthood. Male rats were exposed to AIE (5 g/kg/day, 2-days-on/2-days-off, i.g., P25-P54) or water (CON), and brain tissue was harvested in adulthood (> P80). Immunohistochemistry and co-immunofluorescence were used to assess expression of ChAT, PV, and WFA labeling within the adult PFC and striatum following AIE exposure.

Results ChAT and PV interneuron numbers in the striatum and PFC were unchanged after AIE exposure. However, WFA labeling in the PFC of AIE-exposed rats was increased compared to CON rats. Moreover, significantly more PV neurons were surrounded by WFA labeling in AIE-exposed subjects relative to controls in both PFC subregions assessed: the orbitofrontal cortex (CON = 34%; AIE = 40%) and the medial PFC (CON = 10%; AIE = 14%).

Conclusions These findings indicate that while PV interneuron expression in the adult PFC and striatum is unaltered following AIE exposure, PNNs surrounding these neurons (indicated by extracellular WFA binding) are increased. This increase in PNNs may restrict plasticity of the ensheathed neurons, thus contributing to impaired microcircuitry in frontostriatal connectivity and related behavioral impairments.