resorption

Runx2 deletion in hypertrophic chondrocytes impairs osteoclast mediated bone resorption

AUTHORS

Harunur Rashid, Caris M. Smith, Vashti Convers, Katelynn Clark, Amjad Javed

ABSTRACT

Deletion of Runx2 gene in proliferating chondrocytes results in complete failure of endochondral ossification and perinatal lethality. We reported recently that mice with Runx2 deletion specifically in hypertrophic chondrocytes (HCs) using the Col10a1-Cre transgene survive and exhibit enlarged growth plates due to decreased HC apoptosis and cartilage resorption. Bulk of chondrogenesis occurs postnatally, however, the role of Runx2 in HCs during postnatal chondrogenesis is unknown. Despite limb dwarfism, adult homozygous (Runx2HC/HC) mice showed a significant increase in length of growth plate and articular cartilage. Consistent with doubling of the hypertrophic zone, collagen type X expression was increased in Runx2HC/HC mice. In sharp contrast, expression of metalloproteinases and aggrecanases were markedly decreased. Impaired cartilage degradation was evident by the retention of significant amount of safranin-O positive cartilage. Histomorphometry and μCT uncovered increased trabecular bone mass with a significant increase in BV/TV ratio, trabecular number, thickness, and a decrease in trabecular space in Runx2HC/HC mice. To identify if this is due to increased bone synthesis, expression of osteoblast differentiation markers was evaluated and found to be comparable amongst littermates. Histomorphometry confirmed similar number of osteoblasts in the littermates. Furthermore, dynamic bone synthesis showed no differences in mineral apposition or bone formation rates. Surprisingly, three-point-bending test revealed Runx2HC/HC bones to be structurally less strong. Interestingly, both the number and surface of osteoclasts were markedly reduced in Runx2HC/HC littermates. Rankl and IL-17a ligands that promote osteoclast differentiation were markedly reduced in Runx2HC/HC mice. Bone marrow cultures were performed to independently establish Runx2 and hypertrophic chondrocytes role in osteoclast development. The culture from the Runx2HC/HC mice formed significantly fewer and smaller osteoclasts. The expression of mature osteoclast markers, Ctsk and Mmp9, were significantly reduced in the cultures from Runx2HC/HC mice. Thus, Runx2 functions extend beyond embryonic development and chondrocyte hypertrophy by regulating cartilage degradation, osteoclast differentiation, and bone resorption during postnatal endochondral ossification.

Phospholipase D2 controls bone homeostasis by modulating M-CSF-dependent osteoclastic cell migration and microtubule stability

AUTHORS

Hyun-Ju Kim, Dong-Kyo Lee, Xian Jin, Xiangguo Che, Sung Ho Ryu & Je-Yong Choi

ABSTRACT

Phospholipase D2 (PLD2), a signaling protein, plays a central role in cellular communication and various biological processes. Here, we show that PLD2 contributes to bone homeostasis by regulating bone resorption through osteoclastic cell migration and microtubule-dependent cytoskeletal organization. Pld2-deficient mice exhibited a low bone mass attributed to increased osteoclast function without altered osteoblast activity. While Pld2 deficiency did not affect osteoclast differentiation, its absence promoted the migration of osteoclast lineage cells through a mechanism involving M-CSF-induced activation of the PI3K–Akt–GSK3β signaling pathway. The absence of Pld2 also boosted osteoclast spreading and actin ring formation, resulting in elevated bone resorption. Furthermore, Pld2 deletion increased microtubule acetylation and stability, which were later restored by treatment with a specific inhibitor of Akt, an essential molecule for microtubule stabilization and osteoclast bone resorption activity. Interestingly, PLD2 interacted with the M-CSF receptor (c-Fms) and PI3K, and the association between PLD2 and c-Fms was reduced in response to M-CSF. Altogether, our findings indicate that PLD2 regulates bone homeostasis by modulating osteoclastic cell migration and microtubule stability via the M-CSF-dependent PI3K–Akt–GSK3β axis.

A functional motif of long noncoding RNA Nron against osteoporosis

AUTHORS

Fujun Jin, Junhui Li, Yong-Biao Zhang, Xiangning Liu, Mingxiang Cai, Meijing Liu, Mengyao Li, Cui Ma, Rui Yue, Yexuan Zhu, Renfa Lai, Zuolin Wang, Xunming Ji, Huawei Wei, Jun Dong, Zhiduo Liu, Yifei Wang, Yao Sun & Xiaogang Wang

ABSTRACT

Long noncoding RNAs are widely implicated in diverse disease processes. Nonetheless, their regulatory roles in bone resorption are undefined. Here, we identify lncRNA Nron as a critical suppressor of bone resorption. We demonstrate that osteoclastic Nron knockout mice exhibit an osteopenia phenotype with elevated bone resorption activity. Conversely, osteoclastic Nron transgenic mice exhibit lower bone resorption and higher bone mass. Furthermore, the pharmacological overexpression of Nron inhibits bone resorption, while caused apparent side effects in mice. To minimize the side effects, we further identify a functional motif of Nron. The delivery of Nron functional motif to osteoclasts effectively reverses bone loss without obvious side effects. Mechanistically, the functional motif of Nron interacts with E3 ubiquitin ligase CUL4B to regulate ERα stability. These results indicate that Nron is a key bone resorption suppressor, and the lncRNA functional motif could potentially be utilized to treat diseases with less risk of side effects.

Repeated oral administration of a cathepsin K inhibitor significantly suppresses bone resorption in exercising horses with evidence of increased bone formation and maintained bone turnover

Our investigations evaluated the effect of VEL-0230, a highly specific irreversible inhibitor of cathepsin K (CatK). The objectives of our study were to determine whether repeated dosing of a CatK inhibitor (CatKI) produced a desired inhibition of the bone resorption biomarker (CTX-1), and document the effect of repeated dosing on bone homeostasis, structure, and dynamics of bone resorption and formation in horses.