bone formation

SOXC are critical regulators of adult bone mass

AUTHORS

Marco Angelozzi, Anirudha Karvande & Véronique Lefebvre

ABSTRACT

Pivotal in many ways for human health, the control of adult bone mass is governed by complex, incompletely understood crosstalk namely between mesenchymal stem cells, osteoblasts and osteoclasts. The SOX4, SOX11 and SOX12 (SOXC) transcription factors were previously shown to control many developmental processes, including skeletogenesis, and SOX4 was linked to osteoporosis, but how SOXC control adult bone mass remains unknown. Using SOXC loss- and gain-of-function mouse models, we show here that SOXC redundantly promote prepubertal cortical bone mass strengthening whereas only SOX4 mitigates adult trabecular bone mass accrual in early adulthood and subsequent maintenance. SOX4 favors bone resorption over formation by lowering osteoblastogenesis and increasing osteoclastogenesis. Single-cell transcriptomics reveals its prevalent expression in Lepr+ mesenchymal cells and ability to upregulate genes for prominent anti-osteoblastogenic and pro-osteoclastogenic factors, including interferon signaling-related chemokines, contributing to these adult stem cells’ secretome. SOXC, with SOX4 predominantly, are thus key regulators of adult bone mass.

Unique quinoline orientations shape the modified aptamer to sclerostin for enhanced binding affinity and bone anabolic potential

AUTHORS

Amu Gubu, Yuan Ma, Sifan Yu, Huarui Zhang, Zefeng Chen, Shuaijian Ni, Razack Abdullah, Huan Xiao, Yihao Zhang, Hong Dai, Hang Luo, Yuanyuan Yu, Luyao Wang, Hewen Jiang, Ning Zhang, Yuan Tian, Haitian Li, Aiping Lu, Baoting Zhang, Ge Zhang

ABSTRACT

Osteogenesis imperfecta (OI) is a rare genetic disease characterized by bone fragility and bone formation. Sclerostin could negatively regulate bone formation by antagonizing the Wnt signal pathway, whereas it imposes severe cardiac ischemic events in clinic. Our team has screened an aptamer that could promote bone anabolic potential without cardiovascular risk. However, the affinity of the aptamer is lower and needs to be improved. In the study, hydrophobic quinoline molecule with unique orientations (seven subtypes) were incorporated into key sites of a bone anabolic aptamer against sclerostin to form a modified aptamer library. Among all the quinoline modifications, 5-quinoline modification could shape the molecular recognition of modified aptamers to sclerostin to facilitate enhancing its binding to sclerostin toward the highest affinity by interacting with newly participated binding sites in sclerostin. Further, 5-quinoline modification could facilitate the modified aptamer attenuating the suppressed effect of the transfected sclerostin on both Wnt signaling and bone formation marker expression levels in vitro, promoting bone anabolism in OI mice (Col1a2+/G610C). The proposed quinoline-oriented modification strategy could shape the molecular recognition of modified aptamers to proteins to facilitate enhancing its binding affinity and therapeutic potency.

Differences in bone histomorphometry between White postmenopausal women with and without atypical femoral fracture after long-term bisphosphonate therapy

AUTHORS

Shijing Qiu, Ruban Dhaliwal, George Divine, Elizabeth Warner, Sudhaker D Rao

ABSTRACT

Bone histomorphometric endpoints in transilial biopsies may be associated with an increased risk of atypical femoral fracture (AFF) in patients with osteoporosis who take antiresorptives, including bisphosphonates (BPs). One way to test this hypothesis is to evaluate bone histomorphometric endpoints in age-, gender-, and treatment time-matched patients who either had AFF or did not have AFF. In this study, we performed transiliac bone biopsies in 52 White postmenopausal women with (n = 20) and without (n = 32) AFFs, all of whom had been treated for osteoporosis continuously with alendronate for 4–17 yr. Despite the matched range of treatment duration (4–17 yr), AFF patients received alendronate for significantly longer time (10.7 yr) than non-AFF patients (8.0 yr) (P = .014). Bone histomorphometric endpoints reflecting microstructure and turnover were assessed in cancellous, intracortical, and endocortical envelopes from transilial biopsy specimens obtained from BP-treated patients 3–6 mo after AFF and from non-AFF patients with similar age-, gender-, and range of BP treatment duration. However, in both cancellous and intracortical envelopes, AFF patients had significantly lower wall thickness (W.Th) and higher osteoclast surface (Oc.S/BS) than non-AFF patients. In addition, AFF patients had significantly higher eroded surface (ES/BS) only in the intracortical envelope. None of the dynamic variables related to bone formation and turnover differed significantly between the groups. In conclusion, in the ilium of BP-treated patients with osteoporosis, AFF patients have lower thickness of superficial bone (lower W.Th) of the cancellous and cortical envelopes than non-AFF patients. AFF and non-AFF patients have a similar bone turnover rate in the ilium. Furthermore, in this population, as in previous work, AFF is more likely to occur in BP-treated patients with longer treatment duration.

Aromatase deficiency in transplanted bone marrow cells improves vertebral trabecular bone quantity...

Aromatase deficiency in transplanted bone marrow cells improves vertebral trabecular bone quantity, connectivity, and mineralization and decreases cortical porosity in murine bone marrow transplant recipients

AUTHORS

Katie Rubitschung, Amber Sherwood, Rasesh Kapadia, Yin Xi, Asghar Hajibeigi, Katya B. Rubinow, Joseph E. Zerwekh, Orhan K. Öz

ABSTRACT

Estradiol is an important regulator of bone accumulation and maintenance. Circulating estrogens are primarily produced by the gonads. Aromatase, the enzyme responsible for the conversion of androgens to estrogen, is expressed by bone marrow cells (BMCs) of both hematopoietic and nonhematopoietic origin. While the significance of gonad-derived estradiol to bone health has been investigated, there is limited understanding regarding the relative contribution of BMC derived estrogens to bone metabolism. To elucidate the role of BMC derived estrogens in male bone, irradiated wild-type C57BL/6J mice received bone marrow cells transplanted from either WT (WT(WT)) or aromatase-deficient (WT(ArKO)) mice. MicroCT was acquired on lumbar vertebra to assess bone quantity and quality. WT(ArKO) animals had greater trabecular bone volume (BV/TV p = 0.002), with a higher trabecular number (p = 0.008), connectivity density (p = 0.017), and bone mineral content (p = 0.004). In cortical bone, WT(ArKO) animals exhibited smaller cortical pores and lower cortical porosity (p = 0.02). Static histomorphometry revealed fewer osteoclasts per bone surface (Oc.S/BS%), osteoclasts on the erosion surface (ES(Oc+)/BS, p = 0.04) and low number of osteoclasts per bone perimeter (N.Oc/B.Pm, p = 0.01) in WT(ArKO). Osteoblast-associated parameters in WT(ArKO) were lower but not statistically different from WT(WT). Dynamic histomorphometry suggested similar bone formation indices’ patterns with lower mean values in mineral apposition rate, label separation, and BFR/BS in WT(ArKO) animals. Ex vivo bone cell differentiation assays demonstrated relative decreased osteoblast differentiation and ability to form mineralized nodules. This study demonstrates a role of local 17β-estradiol production by BMCs for regulating the quantity and quality of bone in male mice. Underlying in vivo cellular and molecular mechanisms require further study.

Tmem263 deletion disrupts the GH/IGF-1 axis and causes dwarfism and impairs skeletal acquisition

AUTHORS

Dylan C Sarver, Jean Garcia-Diaz, Muzna Saqib, Ryan C Riddle, G William Wong

ABSTRACT

Genome-wide association studies (GWAS) have identified a large number of candidate genes believed to affect longitudinal bone growth and bone mass. One of these candidate genes, TMEM263, encodes a poorly characterized plasma membrane protein. Single nucleotide polymorphisms in TMEM263 are associated with bone mineral density in humans and mutations are associated with dwarfism in chicken and severe skeletal dysplasia in at least one human fetus. Whether this genotype-phenotype relationship is causal, however, remains unclear. Here, we determine whether and how TMEM263 is required for postnatal growth. Deletion of the Tmem263 gene in mice causes severe postnatal growth failure, proportional dwarfism, and impaired skeletal acquisition. Mice lacking Tmem263 show no differences in body weight within the first 2 weeks of postnatal life. However, by P21 there is a dramatic growth deficit due to a disrupted growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis, which is critical for longitudinal bone growth. Tmem263-null mice have low circulating IGF-1 levels and pronounced reductions in bone mass and growth plate length. The low serum IGF-1 in Tmem263-null mice is associated with reduced hepatic GH receptor (GHR) expression and GH-induced JAK2/STAT5 signaling. A deficit in GH signaling dramatically alters GH-regulated genes and feminizes the liver transcriptome of Tmem263-null male mice, with their expression profile resembling wild-type female, hypophysectomized male, and Stat5b-null male mice. Collectively, our data validates the causal role for Tmem263 in regulating postnatal growth and raises the possibility that rare mutations or variants of TMEM263 may potentially cause GH insensitivity and impair linear growth.

Runx2 deletion in hypertrophic chondrocytes impairs osteoclast mediated bone resorption

AUTHORS

Harunur Rashid, Caris M. Smith, Vashti Convers, Katelynn Clark, Amjad Javed

ABSTRACT

Deletion of Runx2 gene in proliferating chondrocytes results in complete failure of endochondral ossification and perinatal lethality. We reported recently that mice with Runx2 deletion specifically in hypertrophic chondrocytes (HCs) using the Col10a1-Cre transgene survive and exhibit enlarged growth plates due to decreased HC apoptosis and cartilage resorption. Bulk of chondrogenesis occurs postnatally, however, the role of Runx2 in HCs during postnatal chondrogenesis is unknown. Despite limb dwarfism, adult homozygous (Runx2HC/HC) mice showed a significant increase in length of growth plate and articular cartilage. Consistent with doubling of the hypertrophic zone, collagen type X expression was increased in Runx2HC/HC mice. In sharp contrast, expression of metalloproteinases and aggrecanases were markedly decreased. Impaired cartilage degradation was evident by the retention of significant amount of safranin-O positive cartilage. Histomorphometry and μCT uncovered increased trabecular bone mass with a significant increase in BV/TV ratio, trabecular number, thickness, and a decrease in trabecular space in Runx2HC/HC mice. To identify if this is due to increased bone synthesis, expression of osteoblast differentiation markers was evaluated and found to be comparable amongst littermates. Histomorphometry confirmed similar number of osteoblasts in the littermates. Furthermore, dynamic bone synthesis showed no differences in mineral apposition or bone formation rates. Surprisingly, three-point-bending test revealed Runx2HC/HC bones to be structurally less strong. Interestingly, both the number and surface of osteoclasts were markedly reduced in Runx2HC/HC littermates. Rankl and IL-17a ligands that promote osteoclast differentiation were markedly reduced in Runx2HC/HC mice. Bone marrow cultures were performed to independently establish Runx2 and hypertrophic chondrocytes role in osteoclast development. The culture from the Runx2HC/HC mice formed significantly fewer and smaller osteoclasts. The expression of mature osteoclast markers, Ctsk and Mmp9, were significantly reduced in the cultures from Runx2HC/HC mice. Thus, Runx2 functions extend beyond embryonic development and chondrocyte hypertrophy by regulating cartilage degradation, osteoclast differentiation, and bone resorption during postnatal endochondral ossification.