Elastase inhibitors reverse elastin degradation and abnormal alveologenesis and attenuate the lung structural abnormalities induced by mechanical ventilation with O2-rich gas. The potential of these molecules to improve endothelial function and to ameliorate severe bronchopulmonary dysplasia (BPD) during lung development is not yet understood.
Acceleration of Fracture Healing by Overexpression of Basic Fibroblast Growth Factor in the Mesenchymal Stromal Cells
In this study, we engineered mesenchymal stem cells (MSCs) to over-express basic fibroblast growth factor (bFGF) and evaluated its effects on fracture healing. Adipose-derived mouse MSCs were transduced to express bFGF and green fluorescence protein (ADSCbFGF-GFP). Closed-femoral fractures were performed with osterix-mCherry reporter mice of both sexes.
The Lrp4R1170Q Homozygous Knock-In Mouse Recapitulates the Bone Phenotype of Sclerosteosis in Humans
Sclerosteosis is a rare autosomal recessive bone disorder marked by hyperostosis of the skull and tubular bones. Initially, we and others reported that sclerosteosis was caused by loss-of-function mutations in SOST, encoding sclerostin. More recently, we identified disease-causing mutations in LRP4, a binding partner of sclerostin, in three sclerosteosis patients. Upon binding to sclerostin, LRP4 can inhibit the canonical WNT signaling that is known to be an important pathway in the regulation of bone formation.
Cyanidin Chloride Inhibits Ovariectomy-Induced Osteoporosis by Suppressing RANKL-mediated Osteoclastogenesis and Associated Signaling Pathways
Over-production and activation of osteoclasts is a common feature of osteolytic conditions such as osteoporosis, tumor-associated osteolysis, and inflammatory bone erosion. Cyanidin Chloride, a subclass of anthocyanin, displays antioxidant and anti-carcinogenesis properties, but its role in osteoclastic bone resorption and osteoporosis is not well understood. In this study, we showed that Cyanidin Chloride inhibits osteoclast formation, hydroxyapatite resorption, and receptor activator of NF-κB ligand (RANKL)-induced osteoclast marker gene expression; including ctr, ctsk and trap.
Role of glucocorticoid-induced leucine zipper (GILZ) in inflammatory bone loss
TNF-α plays a key role in the development of rheumatoid arthritis (RA) and inflammatory bone loss. Unfortunately, treatment of RA with anti-inflammatory glucocorticoids (GCs) also causes bone loss resulting in osteoporosis. Our previous studies showed that overexpression of glucocorticoid-induced leucine zipper (GILZ), a mediator of GC’s anti-inflammatory effect, can enhance osteogenic differentiation in vitro and bone acquisition in vivo.
DOK3 Modulates Bone Remodeling by Negatively Regulating Osteoclastogenesis and Positively Regulating Osteoblastogenesis
Osteoclastogenesis is essential for bone remodeling and normal skeletal maintenance. Receptor activator of NF-κB ligand (RANKL) promotes osteoclast differentiation and function but requires costimulation of immunoreceptor tyrosine-based activation motif (ITAM)-coupled immunoreceptors. Triggering receptor expressed on myeloid cells-2 (TREM2) coupled to ITAM-adaptor protein DNAX activation protein 12kDA (DAP12) provides costimulation of intracellular calcium signaling during osteoclastogenesis.