Improving Combination Osteoporosis Therapy in a Preclinical Model of Heightened Osteoanabolism

Combining anticatabolic agents with parathyroid hormone (PTH) to enhance bone mass has yielded mixed results in osteoporosis patients. Toward the goal of enhancing the efficacy of these regimens, we tested their utility in combination with loss of the transcription factor Nmp4 because disabling this gene amplifies PTH-induced increases in trabecular bone in mice by boosting osteoblast secretory activity.

Increased vascularization promotes functional recovery in the transected spinal cord rats by implanted vascular endothelial growth factor-targeting collagen scaffold

Spinal cord injury (SCI) is global health concern. The effective strategies for SCI are relevant to the improvement on nerve regeneration microenvironment. Vascular endothelial growth factor (VEGF) is an important cytokine for inducing angiogenesis and accelerating nerve system function recovery from injury. We proposed that VEGF could improve nerve regeneration in SCI.

Luteoloside prevents lipopolysaccharide-induced osteolysis and suppresses RANKL-induced osteoclastogenesis through attenuating RANKL signaling cascades

Bone destruction or osteolysis marked by excessive osteoclastic bone resorption is a very common medical condition. Identification of agents that can effectively suppress excessive osteoclast formation and function is crucial for prevention and treatment of osteolytic conditions such as periprosthetic joint infection and periprosthetic loosening.

Hibernating Little Pocket Mice Show Few Seasonal Changes in Bone Properties

Periods of disuse or physical inactivity increases bone porosity and decreases bone mineral density, resulting in a loss of bone mechanical competence in many animals. Although large hibernators like bears and marmots prevent bone loss during hibernation, despite long periods of physical inactivity, some small hibernators do lose bone during hibernation.

Kynurenine, a Tryptophan Metabolite That Accumulates With Age, Induces Bone Loss

Age-dependent bone loss occurs in humans and in several animal species, including rodents. The underlying causal mechanisms are probably multifactorial, although an age-associated increase in the generation of reactive oxygen species has been frequently implicated. We previously reported that aromatic amino acids function as antioxidants, are anabolic for bone, and that they may potentially play a protective role in an aging environment.

Mimicking the effects of spaceflight on bone: Combined effects of disuse and chronic low-dose rate radiation exposure on bone mass in mice

During spaceflight, crewmembers are subjected to biomechanical and biological challenges including microgravity and radiation. In the skeleton, spaceflight leads to bone loss, increasing the risk of fracture. Studies utilizing hindlimb suspension (HLS) as a ground-based model of spaceflight often neglect the concomitant effects of radiation exposure, and even when radiation is accounted for, it is often delivered at a high-dose rate over a very short period of time, which does not faithfully mimic spaceflight conditions.