Inhibition of ACLY Leads to Suppression of Osteoclast Differentiation and Function Via Regulation of Histone Acetylation

AUTHORS

Qian Guo, Honglei Kang, Jia Wang, Yimin Dong, Renpeng Peng, Hongjian Zhao, Wei Wu, Hanfeng Guan, Feng Li

ABSTRACT

ATP-citrate lyase (ACLY), generating most of the nucleocytosolic acetyl coenzyme A (acetyl-CoA) for histone acetylation, links cell metabolism to epigenetic regulation. Recent investigations demonstrated that ACLY activated by metabolic reprogramming played an essential role in both M1 and M2 macrophage activation via histone acetylation. Previous studies also revealed that histone methylation and acetylation were critical for transcriptional regulation of osteoclast-specific genes. Considering that osteoclast differentiation also undergoes metabolic reprogramming and the activity of ACLY is always Akt-dependent, we inferred that receptor activator of NF-κB (RANK) activation might enhance the activity of ACLY through downstream pathways and ACLY might play a role in osteoclast formation. In the current study, we found that ACLY was gradually activated during RANK ligand (RANKL)-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs). Both ACLY knock-down and small molecular ACLY inhibitor BMS-303141 significantly decreased nucleocytosolic acetyl-CoA in BMMs and osteoclasts and suppressed osteoclast formation in vitro. BMS-303141 also suppressed osteoclast formation in vivo and prevents ovariectomy (OVX)-induced bone loss. Further investigations showed that RANKL triggered ACLY translocation into nucleus, consistent with increasing histone H3 acetylation, which was correlated to ACLY. The H3 lysine residues influenced by ACLY were in accordance with GCN5 targets. Using GCN5 knock-down and overexpression, we showed that ACLY and GCN5 functioned in the same pathway for histone H3 acetylation. Analysis of pathways downstream of RANK activation revealed that ACLY was Akt-dependent and predominately affected Akt pathway. With the help of RNA-sequencing, we discovered Rac1 as a downstream regulator of ACLY, which was involved in shACLY-mediated suppression of osteoclast differentiation, cytoskeleton organization, and signal transduction and was transcriptionally regulated by ACLY via histone H3 acetylation. To summarize, our results proved that inhibition of ATP-citrate lyase led to suppression of osteoclast differentiation and function via regulation of histone acetylation. Rac1 could be a downstream regulator of ACLY. © 2021 American Society for Bone and Mineral Research (ASBMR).

Bone Histomorphometry and 18F-Sodium Fluoride Positron Emission Tomography Imaging: Comparison Between only Bone Turnover-based and...

AUTHORS

Louise Aaltonen, Niina Koivuviita, Marko Seppänen, Inari S. Burton, Heikki Kröger, Eliisa Löyttyniemi & Kaj Metsärinne

ABSTRACT

Bone biopsy is the gold standard for characterization of renal osteodystrophy (ROD). However, the classification of the subtypes of ROD based on histomorphometric parameters is not unambiguous and the range of normal values for turnover differ in different publications. 18F-Sodium Fluoride positron emission tomography (18F-NaF PET) is a dynamic imaging technique that measures turnover. 18F-NaF PET has previously been shown to correlate with histomorphometric parameters. In this cross-sectional study, 26 patients on dialysis underwent a 18F-NaF PET and a bone biopsy. Bone turnover-based classification was assessed using Malluche’s historical reference values for normal bone turnover. In unified turnover-mineralization-volume (TMV)-based classification, the whole histopathological picture was evaluated and the range for normal turnover was set accordingly. Fluoride activity was measured in the lumbar spine (L1–L4) and at the anterior iliac crest. On the basis of turnover-based classification of ROD, 12% had high turnover and 61% had low turnover bone disease. On the basis of unified TMV-based classification of ROD, 42% had high turnover/hyperparathyroid bone disease and 23% had low turnover/adynamic bone disease. When using unified TMV-based classification of ROD, 18F-NaF PET had an AUC of 0.86 to discriminate hyperparathyroid bone disease from other types of ROD and an AUC of 0.87, for discriminating adynamic bone disease. There was a disproportion between turnover-based classification and unified TMV-based classification. More research is needed to establish normal range of bone turnover in patients with CKD and to establish the role of PET imaging in ROD.

Bone Nanomechanical Properties and Relationship to Bone Turnover and Architecture in Patients With Atypical Femur Fractures: A Prospective Nested Case-Control Study

AUTHORS

Lanny V. Griffin,Elizabeth Warner,Saroj Palnitkar,Shijing Qiu,Mahalakshmi Honasoge,Shawna G. Griffin,George Divine,Sudhaker D. Rao

ABSTRACT

Atypical femur fractures (AFFs) are well-established serious complication of long-term bisphosphonate and denosumab therapy in patients with osteopenia or osteoporosis. To elucidate underlying mechanism(s) for the development of AFF, we performed a nested case-control study to investigate bone tissue nanomechanical properties and prevailing bone microstructure and tissue-level remodeling status as assessed by bone histomorphometry. We hypothesized that there would be differences in nanomechanical properties between patients with and without AFF and that bone microstructure and remodeling would be related to nanomechanical properties. Thirty-two full-thickness transiliac bone biopsies were obtained from age- and sex-matched patients on long-term bisphosphonate therapy with (n = 16) and without an AFF (n = 16). Standard histomorphometric measurements were made in each sample on three different bone envelopes (cancellous, intracortical, and endosteal). Iliac bone wall thickness was significantly lower on all three bone surfaces in patients with AFF than in those without AFF. Surface-based bone formation rate was suppressed similarly in both groups in comparison to healthy premenopausal and postmenopausal women, with no significant difference between the two groups. Nanoindentation was used to assess material properties of cortical and cancellous bone separately. Elastic modulus was higher in cortical than in cancellous bone in patients with AFF as well as compared to the elastic modulus of cortical bone from non-AFF patients. However, the elastic modulus of the cancellous bone was not different between AFF and non-AFF groups or between cortical and cancellous bone of non-AFF patients. Resistance to plastic deformation was decreased in cortical bone in both AFF and non-AFF groups compared to cancellous bone, but to a greater extent in AFF patients. We conclude that long-term bisphosphonate therapy is associated with prolonged suppression of bone turnover resulting in altered cortical remodeling and tissue nanomechanical properties leading to AFF.

The alarmin interleukin-1α triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury

AUTHORS

Floriane Bretheau, Adrian Castellanos-Molina, Benoit Mailhot, Maxime Kusik, Dominic Belanger, Martine Lessard, Nicolas Vallières, Xiaoyu Liu, Ning Quan, Steve Lacroix

ABSTRACT

Spinal cord injury (SCI) triggers neuroinflammation, and subsequently secondary degeneration and oligodendrocyte (OL) death. We report that the alarmin interleukin (IL)-1α is released by damaged microglia after SCI. Intra-cisterna magna injection of IL-1α in mice rapidly induced neutrophil infiltration and OL death throughout the spinal cord, mimicking what is seen at sites of SCI. These effects were abolished by co-treatment with the IL-1R1 antagonist anakinra, as well as in IL-1R1-knockout mice which showed enhanced locomotor recovery after SCI. Conditional restoration of IL-1R1 expression in astrocytes or endothelial cells (ECs), but not in OLs or microglia, restored IL-1α-induced effects, while astrocyte- or EC-specific Il1r1 deletion reduced OL loss. Conditioned medium derived from IL-1α-stimulated astrocytes is toxic for OLs; further, IL-1α-stimulated astrocytes generate reactive oxygen species (ROS) and blocking ROS production in IL-1α-treated or SCI mice prevented OL loss. Thus, after SCI, microglia release IL-1α, which induces astrocyte- and EC-mediated OL degeneration.

WNT7B overexpression rescues bone loss caused by glucocorticoids in mice

AUTHORS

Hong Chen, Fangfang Song, Fanxin Long

ABSTRACT

Glucocorticoids, widely prescribed for anti-inflammatory and immunosuppressive purposes, are the most common secondary cause for osteoporosis and related fractures. Current anti-resorptive and anabolic therapies are insufficient for treating glucocorticoid-induced osteoporosis due to contraindications or concerns of side effects. Glucocorticoids have been shown to disrupt Wnt signaling in osteoblast-lineage cells, but the efficacy for Wnt proteins to restore bone mass after glucocorticoid therapy has not been examined. Here by using two mouse genetic models wherein WNT7B expression is temporally activated by either tamoxifen or doxycycline in osteoblast-lineage cells, we show that WNT7B recovers bone mass following glucocorticoid-induced bone loss, thanks to increased osteoblast number and function. However, WNT7B overexpression in bone either before or after glucocorticoid treatments does not ameliorate the abnormal accumulation of body fat. The study demonstrates a potent bone anabolic function for WNT7B in countering glucocorticoid-induced bone loss.

Nerve transfer for restoration of lower motor neuron-lesioned bladder function. Part 2: correlation between histological changes and nerve evoked contractions

AUTHORS

Mary F. Barbe, Courtney L. Testa, Geneva E. Cruz, Nagat A. Frara, Ekta Tiwari, Lucas J. Hobson, Brian S. McIntyre, Danielle S. Porreca, Dania Giaddui, Alan S. Braverman, Emily P. Day, Mamta Amin, Justin M. Brown, Michael Mazzei, Michel A. Pontari, Ida J. Wagner, and Michael R. Ruggieri Sr.

ABSTRACT

We determined the effect of pelvic organ decentralization and reinnervation 1 yr later on urinary bladder histology and function. Nineteen canines underwent decentralization by bilateral transection of all coccygeal and sacral (S) spinal roots, dorsal roots of lumbar (L)7, and hypogastric nerves. After exclusions, eight were reinnervated 12 mo postdecentralization with obturator-to-pelvic and sciatic-to-pudendal nerve transfers, then euthanized 8-12 mo later. Four served as long-term decentralized only animals. Before euthanasia, pelvic or transferred nerves and L1–S3 spinal roots were stimulated and maximum detrusor pressure (MDP) recorded. Bladder specimens were collected for histological and ex vivo smooth muscle contractility studies. Both reinnervated and decentralized animals showed less or denuded urothelium, fewer intramural ganglia, and more inflammation and collagen, than controls, although percent muscle was maintained. In reinnervated animals, pgp9.5+ axon density was higher compared with decentralized animals. Ex vivo smooth muscle contractions in response to KCl correlated positively with submucosal inflammation, detrusor muscle thickness, and pgp9.5+ axon density. In vivo, reinnervated animals showed higher MDP after stimulation of L1–L6 roots compared with their transected L7–S3 roots, and reinnervated and decentralized animals showed lower MDP than controls after stimulation of nerves (due likely to fibrotic nerve encapsulation). MDP correlated negatively with detrusor collagen and inflammation, and positively with pgp9.5+ axon density and intramural ganglia numbers. These results demonstrate that bladder function can be improved by transfer of obturator nerves to pelvic nerves at 1 yr after decentralization, although the fibrosis and inflammation that developed were associated with decreased contractile function.