A novel BMP2 secretagogue ameliorates glucocorticoid induced oxidative stress in osteoblasts by activating NRF2 dependent survival while promoting Wnt/β-catenin mediated osteogenesis

AUTHORS

Divya Rai, Ashish Kumar Tripathi, Anirban Sardar, Alka Raj Pandey, Shradha Sinha, Kunal Chutani, Geeta Dhaniya, Priyanka Kothari, Koneni V. Sashidhara, Ritu Trivedi

ABSTRACT

In our previous study, a novel BMP2 secretagogue was synthesized belonging to a class of galloyl conjugates of flavanones, with remarkable osteogenic potential that promoted bone regeneration. We aimed to establish the protective effect of our compound against bone loss that co-exists with excess Glucocorticoid (GC) therapy. GC therapy induces osteoblast damage leading to apoptosis by increasing reactive oxygen species (ROS). Our results delineate that compound 5e (a BMP2 secretagogue) activates NRF2 signalling to counter the disturbed cellular redox homeostasis and escalate osteoblast survival as assessed by Western blot and immunocytochemistry. Depletion of NRF2 by siRNA blocked activation of the NRF2/HO-1 pathway, magnified oxidative stress, increased apoptosis and abrogated the protective effects of compound 5e. 5e, on the other hand, increased ALP, mineralization activity, and promoted osteoblast differentiation by activating WNT/β-catenin signalling in BMP2 dependent manner, validated by Western blot of WNT3A, SOST, GSK3-β and β-catenin nuclear translocation. Treatment of 5e in presence of BMP inhibitor noggin attenuated the osteogenic efficacy and minimized Wnt//β-catenin signalling in presence of dexamethasone. Our compound prevents GC challenged trabecular and cortical bone loss assessed by micro-CT and promotes bone formation and osteocyte survival determined by calcein labelling and TUNEL assay in GC treated animals. The osteogenic potential of the compound was authenticated by bone turnover markers. On a concluding note, compounds with BMP upregulation can be potential therapeutics for the prevention and treatment of glucocorticoid-induced osteoporosis.

Praeruptorin B inhibits osteoclastogenesis by targeting GSTP1 and impacting on the S-glutathionylation of IKKβ

AUTHORS

Kebin Xu, Ziyi Chen, Jialong Hou, Chenlin Dong, Chengge Shi, Linglin Gao, Zhixian Huang, Ge Shen, Te Wang, Yan Zhou

ABSTRACT

Osteoporosis a common disease in postmenopausal women which contains significant impact on the living quality of women. With the aging of the population, the number of patients suffer from osteoporosis has shown a significant increase. Given the limitations of clinical drugs for the treatment of osteoporosis, natural extracts with small side effects have a great application prospect in the treatment of osteoporosis. Praeruptorin B (Pra-B), is one of the main components found in the roots of Peucedanum praeruptorum Dunn and exhibits anti-inflammatory effects. However, there is no research on the influence of Pra-B on osteoporosis. Here, we showed that Pra-B can dose-dependently suppress osteoclastogenesis without cytotoxicity. Receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL)-induced the nuclear import of P65 was inhibited by Pra-B, which indicated the suppressive effect of Pra-B on NF-κB signaling. Further, Pra-B enhanced the expression of Glutathione S-transferase Pi 1 (GSTP1) and promoted the S-glutathionylation of IKKβ to inhibit the nuclear translocation of P65. Moreover, in vivo experiments showed that Pra-B considerably attenuated the bone loss in ovariectomy (OVX)-induced mice. Collectively, our studies revealed that Pra-B suppress the NF-κB signaling targeting GSTP1 to rescued RANKL-induced osteoclastogenesis in vitro and OVX-induced bone loss in vivo, supporting the potential of Pra-B for treating osteoporosis in the future.

Dose-Related Reduction in Hippocampal Neuronal Populations in Fetal Alcohol Exposed Vervet Monkeys

AUTHORS

Mark W. Burke, Hocine Slimani, Maurice Ptito, Frank R. Ervin, Roberta M. Palmour

ABSTRACT

Fetal alcohol spectrum disorder (FASD) is a chronic debilitating condition resulting in behavioral and intellectual impairments and is considered the most prevalent form of preventable mental retardation in the industrialized world. We previously reported that 2-year-old offspring of vervet monkey (Chlorocebus sabeus) dams drinking, on average, 2.3 ± 0.49 g ethanol per Kg maternal body weight 4 days per week during the last third of pregnancy had significantly lower numbers of CA1 (−51.6%), CA2 (−51.2%) and CA3 (−42.8%) hippocampal neurons, as compared to age-matched sucrose controls. Fetal alcohol-exposed (FAE) offspring also showed significantly lower volumes for these structures at 2 years of age. In the present study, we examined these same parameters in 12 FAE offspring with a similar average but a larger range of ethanol exposures (1.01–2.98 g/Kg/day; total ethanol exposure 24–158 g/Kg). Design-based stereology was performed on cresyl violet-stained and doublecortin (DCX)-immunostained sections of the hippocampus. We report here significant neuronal deficits in the hippocampus with a significant negative correlation between daily dose and neuronal population in CA1 (r2 = 0.486), CA2 (r2 = 0.492), and CA3 (r2 = 0.469). There were also significant correlations between DCX population in the dentate gyrus and daily dose (r2 = 0.560). Both correlations were consistent with linear dose-response models. This study illustrates that neuroanatomical sequelae of fetal ethanol exposure are dose-responsive and suggests that there may be a threshold for this effect.

Ano5 modulates calcium signaling during bone homeostasis in gnathodiaphyseal dysplasia

AUTHORS

Xin Li, Lei Wang, Hongwei Wang, An Qin & Xingjun Qin

ABSTRACT

ANO5 encodes transmembrane protein 16E (TMEM16E), an intracellular calcium-activated chloride channel in the endoplasmic reticulum. Mutations in ANO5 are associated with gnathodiaphyseal dysplasia (GDD), a skeletal disorder causing the jaw deformity and long bone fractures. However, the coordinated mechanism by which ANO5 mediates bone homeostasis in GDD remains poorly defined. Here, we show that ablation of Ano5 reduced intracellular calcium transients, leading to defects in osteogenesis and osteoclastogenesis and thus bone dysplasia. We found a causative de novo ANO5 frameshift insertion mutation (p.L370_A371insDYWRLNSTCL) in a GDD family with osteopenia, accompanied by a decrease in TMEM16E expression and impaired RANKL-induced intracellular calcium ([Ca2+]i) oscillations in osteoclasts. Moreover, using Ano5 knockout (KO) mice, we found that they exhibited low bone volume, abnormal calcium deposits, and defective osteoblast and osteoclast differentiation. We also showed that Ano5 deletion in mice significantly diminished [Ca2+]i oscillations in both osteoblasts and osteoclasts, which resulted in reduced WNT/β-Catenin and RANKL-NFATc1 signaling, respectively. Osteoanabolic treatment of parathyroid hormone was effective in enhancing bone strength in Ano5 KO mice. Consequently, these data demonstrate that Ano5 positively modulates bone homeostasis via calcium signaling in GDD.

The effect of bone particle size on the histomorphometric and clinical outcomes following lateral ridge augmentation procedures. A randomized double blinded controlled trial

AUTHORS

Hussein S. Basma, Muhammad H.A. Saleh, Nico C. Geurs, Peng Li, Andrea Ravidà, Hom-Lay Wang, Ramzi V. Abou-Arraj

ABSTRACT

Background

The aim of this randomized clinical trial was to clinically and histologically compare the amount and quality of bone gained after lateral ridge augmentation (LRA) procedures performed using small (250-1000μm) versus large (1000-2000μm) particle size cortico-cancellous bone allografts at 6 months following surgical intervention.

Materials and Methods

22 patients, each presenting with ridge width less than 5mm were enrolled. Patients were randomly allocated to small (SP) and large particle (LP) size graft. The gain in ridge width at the level of the crest and 4mm apical to the crest was assessed via a standardized procedure before grafting and at time of implant placement, using a surgical caliper and a novel digital technique using cone beam computed tomography (CBCT). Six months following the procedure, trephine bone cores were taken from 19 augmented sites out of 17 patients (14/19 sites were in the posterior mandible) who completed the study for clinical, histologic and histomorphometric analysis.

Results

17 patients (19 sites) completed the study. LP size graft resulted in greater ridge width gain at the level of the crest (LP, 5.1 ± 1.7; SP, 3.7 ± 1.3 mm; p = 0.0642) and 4mm apical to the crest (LP, 5.9 ± 2.2; SP, 5.1 ± 1.8 mm; p = 0.4480) compared with the SP. No statistical significance for the bone density at the time of implant placement (p = 1.00) was found. Vital bone formation was more extensive in the SP compared with the LP 41.0 ± 10.1% vs 31.4 ± 14.8%, respectively (p = 0.05).

Conclusion

The results of the present article show a trend of higher ridge gain using LP during bone augmentation procedure. Future research with bigger sample size should confirm the results of the present article.

Phospholipase D2 controls bone homeostasis by modulating M-CSF-dependent osteoclastic cell migration and microtubule stability

AUTHORS

Hyun-Ju Kim, Dong-Kyo Lee, Xian Jin, Xiangguo Che, Sung Ho Ryu & Je-Yong Choi

ABSTRACT

Phospholipase D2 (PLD2), a signaling protein, plays a central role in cellular communication and various biological processes. Here, we show that PLD2 contributes to bone homeostasis by regulating bone resorption through osteoclastic cell migration and microtubule-dependent cytoskeletal organization. Pld2-deficient mice exhibited a low bone mass attributed to increased osteoclast function without altered osteoblast activity. While Pld2 deficiency did not affect osteoclast differentiation, its absence promoted the migration of osteoclast lineage cells through a mechanism involving M-CSF-induced activation of the PI3K–Akt–GSK3β signaling pathway. The absence of Pld2 also boosted osteoclast spreading and actin ring formation, resulting in elevated bone resorption. Furthermore, Pld2 deletion increased microtubule acetylation and stability, which were later restored by treatment with a specific inhibitor of Akt, an essential molecule for microtubule stabilization and osteoclast bone resorption activity. Interestingly, PLD2 interacted with the M-CSF receptor (c-Fms) and PI3K, and the association between PLD2 and c-Fms was reduced in response to M-CSF. Altogether, our findings indicate that PLD2 regulates bone homeostasis by modulating osteoclastic cell migration and microtubule stability via the M-CSF-dependent PI3K–Akt–GSK3β axis.