Sex-specific differences in Gsα-mediated signaling downstream of PTH1R activation by abaloparatide in bone

AUTHORS

Srilatha Swami, Joshua Johnson, Lawrence Vecchi, Matthew Kim, Beate Lanske, Rachelle Johnson, Joy Wu

ABSTRACT

Teriparatide, recombinant parathyroid hormone (PTH[1-34]), and abaloparatide, an analogue of PTH related-peptide (PTHrP[1-34]), are both anabolic medications for osteoporosis that target the PTH receptor PTH1R. PTH1R is a G protein-coupled receptor, and the stimulatory Gs protein is an important mediator of the anabolic actions of PTH1R activation in bone. We have published that mice lacking the α subunit of Gs in osteoprogenitors do not increase bone mass in response to PTH[1-34]. Unexpectedly, however, PTH[1-34] still increases osteoblast numbers and bone formation rate in male mice, suggesting that PTH1R may have both Gs-dependent and independent actions in bone. Here we examine the role of Gs signaling in the anabolic actions of abaloparatide. We find that abaloparatide increases bone formation in male mice with postnatal deletion of Gsα in Osx-expressing osteoprogenitors (P-GsαOsxKO mice), but not in female P-GsαOsxKO mice. Therefore, abaloparatide has anabolic effects on bone in male but not female mice that appear to be independent of Gs-mediated signaling.

Context-Dependent Roles for Toll-Like Receptors 2 and 9 in the Pathogenesis of Staphylococcus aureus Osteomyelitis

AUTHORS

Jenna R. Petronglo, Nicole E. Putnam, Caleb A. Ford, Virginia Cruz-Victorio, Jacob M. Curry, Casey E. Butrico, Laura E. Fulbright, Joshua R. Johnson, Sun H. Peck, Sana R. Fatah, James E. Cassat

ABSTRACT

Staphylococcus aureus is the major causative agent of bacterial osteomyelitis, an invasive infection of bone. Inflammation generated by the immune response to S. aureus contributes to bone damage by altering bone homeostasis. Increases in the differentiation of monocyte lineage cells into bone-resorbing osteoclasts (osteoclastogenesis) promote bone loss in the setting of osteomyelitis. In this study, we sought to define the role of Toll-like receptor (TLR) signaling in the pathogenesis of S. aureus osteomyelitis. We hypothesized that S. aureus-sensing TLRs 2 and 9, both of which are known to alter osteoclastogenesis in vitro, promote pathological changes to bone, including increased osteoclast abundance, bone loss, and altered callus formation during osteomyelitis. Stimulation of osteoclast precursors with S. aureus supernatant increased osteoclastogenesis in a TLR2-dependent, but not a TLR9-dependent, manner. However, in vivo studies using a posttraumatic murine model of osteomyelitis revealed that TLR2-null mice experienced similar bone damage and increased osteoclastogenesis compared to wild type (WT) mice. Therefore, we tested the hypothesis that compensation between TLR2 and TLR9 contributes to osteomyelitis pathogenesis. We found that mice deficient in both TLR2 and TLR9 (Tlr2/9−/−) have decreased trabecular bone loss in response to infection compared to WT mice. However, osteoclastogenesis is comparable between WT and Tlr2/9−/− mice, suggesting that alternative mechanisms enhance osteoclastogenesis in vivo during osteomyelitis. Indeed, we discovered that osteoclast precursors intracellularly infected with S. aureus undergo significantly increased osteoclast formation, even in the absence of TLR2 and TLR9. These results suggest that TLR2 and TLR9 have context-dependent roles in the alteration of bone homeostasis during osteomyelitis.

Inflammaging and bone loss in a rat model of spinal cord injury

AUTHORS

Dr. Corinne Metzger, Dr. Josephina Rau, Mr. Alexander Stefanov, Ms. Rose M Joseph, Dr. Heather C Allaway, Dr. Matthew R. Allen, and Dr. Michelle A Hook

ABSTRACT

Spinal cord injury (SCI) results in significant loss of sublesional bone, adding to the comorbidity of SCI with an increased risk of fracture and post-fracture complications. Unfortunately, the effect of SCI on skeletal health is also likely to rise as the average age of SCI has increased and there are well-known negative effects of age on bone. To date, however, the impact of age and age-associated inflammation (inflammaging) on skeletal health after SCI remains largely unknown. To address this, we compared bone parameters in young (3 month) and middle-aged (9 month) male and female rats with a moderate thoracic contusion injury, to age and sex matched sham-operated controls. Skeletal parameters, locomotor function and serum cytokine levels were assessed at both subchronic (30 days) and chronic (180 days) time points post injury. We hypothesized that SCI would lead to a dramatic loss of bone immediately after injury in all SCI-groups, with inflammaging leading to greater loss in middle-aged SCI rats. We also predicted that while younger rats may re-establish bone properties in more chronic phases of SCI, middle-aged rats would not. Supporting these hypothesis, trabecular bone volume was significantly lower in male and young female SCI rats early after injury. Contrary to our hypothesis, however, there was greater loss of trabecular bone volume, relative to age-matched shams, in young compared to middle-aged SCI rats with no effects of SCI on trabecular bone volume in middle-aged female rats. Moreover, despite recovery of weight-supported locomotor activity, bone loss persisted into the chronic phase of injury for the young rats. Bone formation rates were lower in young male SCI rats, regardless of the time since injury, while both young and middle-aged female SCI rats had lower bone formation in the subchronic but not chronic phase of SCI. In middle-aged rats, SCI-induced higher osteoclast surfaces, which also persisted into the chronic phase of SCI in middle-aged females. Neither age nor SCI-induced increases in inflammation seemed to be associated with bone loss. In fact, SCI had more dramatic and persistent effects on bone in male rats, while aging and SCI elevated serum cytokines only in female rats. Overall, this study demonstrates SCI-induced loss of bone and altered bone turnover in male and female rats that persists into the chronic phase post-injury. The sex and age dependent variations in bone turnover and serum cytokines, however, underscore the need to further explore both mechanisms and potential therapeutics in multiple demographics.

Prenatal alcohol exposure causes persistent microglial activation and age- and sex- specific effects on cognition and metabolic outcomes in an Alzheimer’s Disease mouse model

AUTHORS

Kathleen R. Walter, Dane K. Ricketts, Brandon H. Presswood, Susan M. Smith & Sandra M. Mooney

ABSTRACT

Background: Prenatal alcohol exposure (PAE) causes behavioral deficits and increases risk of metabolic diseases. Alzheimer’s Disease (AD) is a neurodegenerative disease that has a higher risk in adults with metabolic diseases. Both present with persistent neuroinflammation.

Objectives: We tested whether PAE exacerbates AD-related cognitive decline in a mouse model (3xTg-AD; presenilin/amyloid precursor protein/tau), and assessed associations among cognition, metabolic impairment, and microglial reactivity.

Methods: Alcohol-exposed (ALC) pregnant 3xTg-AD mice received 3 g/kg alcohol from embryonic day 8.5–17.5. We evaluated recognition memory and associative memory (fear conditioning) in 8–10 males and females per group at 3 months of age (3mo), 7mo, and 11mo, then assessed glucose tolerance, body composition, and hippocampal microglial activation at 12mo.

Results: ALC females had higher body weights than controls from 5mo (p < .0001). Controls showed improved recognition memory at 11mo compared with 3mo (p = .007); this was not seen in ALC mice. Older animals froze more during fear conditioning than younger, and ALC mice were hyper-responsive to the fear-related cue (p = .017). Fasting blood glucose was lower in ALC males and higher in ALC females than controls. Positive associations occurred between glucose and fear-related context (p = .04) and adiposity and fear-related cue (p = .0002) in ALC animals. Hippocampal microglial activation was higher in ALC than controls (p < .0001); this trended to correlate with recognition memory.

Conclusions: ALC animals showed age-related cognitive impairments that did not interact with AD risk but did correlate with metabolic dysfunction and somewhat with microglial activation. Thus, metabolic disorders may be a therapeutic target for people with FASDs.

VEGFA from osteoblasts is not required for lamellar bone formation following tibial loading

AUTHORS

Jennifer A. McKenzie, Ian M. Galbreath, Andre F. Coello, Katherine R. Hixon, Matthew J.Silva

ABSTRACT

The relationship between osteogenesis and angiogenesis is complex. Normal bone development requires angiogenesis, mediated by vascular endothelial growth factor A (VEGFA). Studies have demonstrated through systemic inhibition or genetic modification that VEGFA is indispensable for several types of bone repair, presumably via its role in supporting angiogenesis. But a direct role for VEGFA within osteoblasts, in the absence of angiogenesis, has also been suggested. To address the question of whether VEGFA from osteoblasts supports bone formation directly, we applied anabolic loading to induce lamellar bone formation in mice, a process shown to be independent of angiogenesis. We hypothesized that VEGFA from osteoblasts is required for lamellar bone formation. To test this hypothesis, we applied axial tibial compression to inducible Cre/LoxP mice from three lines. Vegfafl/fl mice were crossed with Ubiquitin C (UBC), Osterix (Osx) and Dentin-Matrix Protein 1 (DMP1) Cre-ERT2 mice to target all cells, (pre)osteoblast-lineage cells, and mature osteoblasts and osteocytes, respectively. Genotype effects were determined by comparing control (Vegfafl/fl) and Cre+ (VegfaΔ) mice for each line. At 5 months of age tamoxifen was injected for 5 days followed by a 3-week clearance prior to loading. Female and male mice (N = 100) were loaded for 5 days to peak forces to engender −3100 με peak compressive strain and processed for dynamic histomorphometry (day 12). Percent MS/BS increased 20–70 % as a result of loading, with no effect of genotype in Osx or Dmp1 lines. In contrast, the UBC groups had a significant decrease in relative periosteal BFR/BS in VegfaΔ vs. Vegfafl/fl mice. The UBC line did not have any cortical bone phenotype in non-loaded femurs. In summary, dynamic histomorphometry data confirmed that tibial loading induces lamellar bone formation. Contrary to our hypothesis, there was no decrease in loading-induced bone formation in the Osx or Dmp1 lines in the absence of VEGFA. There was a decrease in bone formation in the UBC line where all cells were targeted. This result indicates that VEGFA from a non-osteoblast cell source supports loading-induced lamellar bone formation, although osteoblast/osteocyte VEGFA is dispensable. These findings support a paracrine model whereby non-osteoblast VEGFA supports lamellar bone formation, independent of angiogenesis.

Constitutive bone marrow adipocytes suppress local bone formation

AUTHORS

Ziru Li, Devika P. Bagchi, Junxiong Zhu, Emily Bowers, Hui Yu, Julie Hardij, Hiroyuki Mori, Katrina Granger, Jon Skjaerlund, Gurjit Mandair, Simin Abrishami, Kanakadurga Singer, Kurt D. Hankenson, Clifford J. Rosen, and Ormond A. MacDougald

ABSTRACT

Bone marrow adipocytes (BMAd) are a unique cell population derived from bone marrow mesenchymal progenitors and marrow adipogenic lineage precursors. Although they have long been considered to be a space-filler within bone cavities, recent studies have revealed important physiological roles in hematopoiesis and bone metabolism. To date, the approaches used to study BMAd function have been confounded by contributions by non-marrow adipocytes or by bone marrow stromal cells. To address this gap in the field, we have developed a BMAdspecific Cre mouse model to deplete BMAds by expression of diphtheria toxin A (DTA), or by deletion of peroxisome proliferator-activated receptor gamma (Pparg). We found that DTAinduced loss of BMAds results in decreased hematopoietic stem and progenitor cell numbers and increased bone mass in BMAd-enriched locations, including the distal tibiae and caudal vertebrae. Elevated bone mass appears to be secondary to enhanced endosteal bone formation, suggesting a local effect caused by depletion of BMAd. Augmented bone formation with BMAd-depletion protects mice from bone loss induced by caloric restriction or ovariectomy,

and facilitates the bone healing process after fracture. Finally, ablation of Pparg also reduces BMAd numbers and largely recapitulates high bone mass phenotypes observed with DTAinduced BMAd depletion.