Mesenchymal stromal cell extracellular vesicles improve lung development in mechanically ventilated preterm lambs

AUTHORS

Kurt H. Albertine, Andrew Rebentisch, Elaine Dawson, Jakob Van Boerum, Emily Major, Juraj Štipka, Hannah Foreman, David Headden, Zoë Vordos, Emily Beck, Zhengming Wang, Haixia Yang, Baifeng Yu, Mar Janna Dahl, Donald M. Null, Davide Bizzotto, Chiara Veneroni, Anna Lavizzari, Raffaele L. Dellacà, Eleni Delavogia, S. Alex Mitsialis, Stella Kourembanas

ABSTRACT

Novel therapies are needed for bronchopulmonary dysplasia (BPD) because no effective treatment exists. Mesenchymal stromal cell extracellular vesicles (MSC-sEVs) have therapeutic efficacy in a mouse pup neonatal hyperoxia BPD model. We tested the hypothesis that MSC-sEVs will improve lung functional and structural development in mechanically ventilated preterm lambs. Preterm lambs (∼129 days; equivalent to human lung development at ∼28 wk gestation) were exposed to antenatal steroids, surfactant, caffeine, and supported by mechanical ventilation for 6–7 days. Lambs were randomized to blinded treatment with either MSC-sEVs (human bone marrow MSC-derived; 2 × 1011 particles iv; n = 8; 4 F/4 M) or vehicle control (saline iv; 4 F/4 M) at 6 and 78 h post delivery. Physiological targets were pulse oximetry O2 saturation 90–94% (P⁢aO2

60–90 mmHg), P⁢aC⁢O2

45–60 mmHg (pH 7.25–7.35), and tidal volume 5–7 mL/kg. MSC-sEVs-treated preterm lambs tolerated enteral feedings compared with vehicle control preterm lambs. Differences in weight patterns were statistically significant. Respiratory severity score, oxygenation index, A-a gradient, distal airspace wall thickness, and smooth muscle thickness around terminal bronchioles and pulmonary arterioles were significantly lower for the MSC-sEVs group. S/F ratio, radial alveolar count, secondary septal volume density, alveolar capillary surface density, and protein abundance of VEGF-R2 were significantly higher for the MSC-sEVs group. MSC-sEVs improved respiratory system physiology and alveolar formation in mechanically ventilated preterm lambs. MSC-sEVs may be an effective and safe therapy for appropriate functional and structural development of the lung in preterm infants who require mechanical ventilation and are at risk of developing BPD.

NEW & NOTEWORTHY This study focused on potential treatment of preterm infants at risk of developing bronchopulmonary dysplasia (BPD), for which no effective treatment exists. We tested treatment of mechanically ventilated preterm lambs with human mesenchymal stromal cell extracellular vesicles (MSC-sEVs). The results show improved respiratory gas exchange and parenchymal growth of capillaries and epithelium that are necessary for alveolar formation. Our study provides new mechanistic insight into potential efficacy of MSC-sEVs for preterm infants at risk of developing BPD.

Skeletal abnormalities in mice with Dnmt3a missense mutations

AUTHORS

Austin Bell-Hensley, Diana C. Beard, Kathryn Feeney, Hongjun Zheng, Yunhao Jiang, Xiyun Zhang, Jin Liu, Harrison Gabel, Audrey McAlinden

ABSTRACT

Overgrowth and intellectual disability disorders in humans are typified by length/height and/or head circumference ≥ 2 standard deviations above the mean as well as intellectual disability and behavioral comorbidities, including autism and anxiety. Tatton-Brown-Rahman Syndrome is one type of overgrowth and intellectual disability disorder caused by heterozygous missense mutations in the DNA methyltransferase 3A (DNMT3A) gene. Numerous DNMT3A mutations have been identified in Tatton-Brown-Rahman Syndrome patients and may be associated with varying phenotype severities of clinical presentation. Two such mutations are the R882H and P904L mutations which result in severe and mild phenotypes, respectively. Mice with paralogous mutations (Dnmt3aP900L/+ and Dnmt3aR878H/+) exhibit overgrowth in their long bones (e.g., femur, humerus), but the mechanisms responsible for their skeletal overgrowth remain unknown. The goal of this study is to characterize skeletal phenotypes in mouse models of Tatton-Brown-Rahman Syndrome and identify potential cellular mechanisms involved in the skeletal overgrowth phenotype. We report that mature mice with the Dnmt3aP900L/+ or Dnmt3aR878H/+ mutation exhibit tibial overgrowth, cortical bone thinning, and weakened bone mechanical properties. Dnmt3aR878H/+ mutants also contain larger bone marrow adipocytes while Dnmt3aP900L/+ mutants show no adipocyte phenotype compared to control animals. To understand the potential cellular mechanisms regulating these phenotypes, growth plate chondrocytes, osteoblasts, and osteoclasts were assessed in juvenile mutant mice using quantitative static histomorphometry and dynamic histomorphometry. Tibial growth plates appeared thicker in mutant juvenile mice, but no changes were observed in osteoblast activity or osteoclast number in the femoral mid-diaphysis. These studies reveal new skeletal phenotypes associated with Tatton-Brown-Rahman Syndrome in mice and provide a rationale to extend clinical assessments of patients with this condition to include bone density and quality testing. These findings may be also informative for skeletal characterization of other mouse models presenting with overgrowth and intellectual disability phenotypes.

Retrospective Characterization of Bone Histomorphometric Findings in Clinical Patient Specimens

AUTHORS

Linnea Sellman, Xiaoyu Tong, Inari S Burton, Heikki Kröger

ABSTRACT

Background

Bone histomorphometry provides comprehensive information on bone metabolism and microstructure. In this retrospective study, we aimed to obtain an overview of the typical indications, referring hospitals, and histomorphometric quantification-based diagnoses of the bone tissue in our histomorphometry laboratory, the only laboratory in Finland carrying out histomorphometric examination of clinical bone biopsies.

Methods

Between January 1, 2005 and December 31, 2020, 553 clinical bone biopsies were sent to our histomorphometry laboratory for histomorphometric examination. The median age of the patients was 55 years (range, 0.2–89.9 years), 51% of them were males, and 18% comprised pediatric patients. We received bone biopsy specimens from 23 hospitals or healthcare units. The majority of the samples we sent by nephrologists.

Results

The most common bone biopsy indications were suspicion of renal osteodystrophy (ROD), unknown bone turnover status in osteoporosis, and several or untypical fractures. The most common quantitative bone histomorphometry-based diagnosis was ROD.

Conclusions

This study provides information on the clinical application of bone histomorphometry in Finland. Precise and quantitative ROD evaluation is the most common indication for bone histomorphometry, being crucial in clinical decision-making and targeted treatment of this patient group.

Calycosin alleviates titanium particle-induced osteolysis by modulating macrophage polarization and subsequent osteogenic differentiation

AUTHORS

Hui Jiang, Yang Wang, Zhao Tang, Xianjiang Peng, Chan Li, Yangjie Dang, Rui Ma

ABSTRACT

Periprosthetic osteolysis (PPO) caused by wear particles is one of the leading causes of implant failure after arthroplasty. Macrophage polarization imbalance and subsequent osteogenic inhibition play a crucial role in PPO. Calycosin (CA) is a compound with anti-inflammatory and osteoprotective properties. This study aimed to evaluate the effects of CA on titanium (Ti) particle-induced osteolysis, Ti particle-induced macrophage polarization and subsequent osteogenic deficits, and explore the associated signalling pathways in a Ti particle-stimulated calvarial osteolysis mouse model using micro-CT, ELISA, qRT-PCR, immunofluorescence and western blot techniques. The results showed that CA alleviated inflammation, osteogenic inhibition and osteolysis in the Ti particle-induced calvarial osteolysis mouse model in vivo. In vitro experiments showed that CA suppressed Ti-induced M1 macrophage polarization, promoted M2 macrophage polarization and ultimately enhanced osteogenic differentiation of MC3T3-E1 cells. In addition, CA alleviated osteogenic deficits by regulating macrophage polarization homeostasis via the NF-κB signalling pathway both in vivo and in vitro. All these findings suggest that CA may prove to be an effective therapeutic agent for wear particle-induced osteolysis.

Effect of Press-Fit Size on Insertion Mechanics and Cartilage Viability in Human and Ovine Osteochondral Grafts

AUTHORS

R.P. Suderman, M.B. Hurtig, M.D. Grynpas, P.R.T. Kuzyk, and A. Changoor

ABSTRACT

Objective

The osteochondral allograft procedure uses grafts constructed larger than the recipient site to stabilize the graft, in what is known as the press-fit technique. This research aims to characterize the relationships between press-fit size, insertion forces, and cell viability in ovine and human osteochondral tissue.

Design

Human (4 donors) and ovine (5 animals) articular joints were used to harvest osteochondral grafts (4.55 mm diameter, N = 33 Human, N = 35 Ovine) and create recipient sites with grafts constructed to achieve varying degrees of press fit (0.025-0.240 mm). Donor grafts were inserted into recipient sites while insertion forces were measured followed by quantification of chondrocyte viability and histological staining to evaluate the extracellular matrix.

Results

Both human and ovine tissues exhibited similar mechanical and cellular responses to changes in press-fit. Insertion forces (Human: 3-169 MPa, Ovine: 36-314 MPa) and cell viability (Human: 16%-89% live, Ovine: 2%-76% live) were correlated to press-fit size for both human (force: r = 0.539, viability: r = −0.729) and ovine (force: r = 0.655, viability: r = −0.714) tissues. In both species, a press-fit above 0.14 mm resulted in reduced cell viability below a level acceptable for transplantation, increased insertion forces, and reduced linear correlation to press-fit size compared to samples with a press-fit below 0.14 mm.

Conclusions

Increasing press-fit size required increased insertion forces and resulted in reduced cell viability. Ovine and human osteochondral tissues responded similarly to impact insertion and varying press-fit size, providing evidence for the use of the ovine model in allograft-related research.

Quantitative analysis of trabecular bone tissue cryosections via a fully automated neural network-based approach

AUTHORS

Christopher Pohl, Moritz Kunzmann, Nico Brandt, Charlotte Koppe, Janine Waletzko-Hellwig, Rainer Bader, Friederike Kalle, Stephan Kersting, Daniel Behrendt, Michael Schlosser, Andreas Hoen

ABSTRACT

Cryosectioning is known as a common and well-established histological method, due to its easy accessibility, speed, and cost efficiency. However, the creation of bone cryosections is especially difficult. In this study, a cryosectioning protocol for trabecular bone that offers a relatively cheap and undemanding alternative to paraffin or resin embedded sectioning was developed. Sections are stainable with common histological dying methods while maintaining sufficient quality to answer a variety of scientific questions. Furthermore, this study introduces an automated protocol for analysing such sections, enabling users to rapidly access a wide range of different stainings. Therefore, an automated ‘QuPath’ neural network-based image analysis protocol for histochemical analysis of trabecular bone samples was established, and compared to other automated approaches as well as manual analysis regarding scattering, quality, and reliability. This highly automated protocol can handle enormous amounts of image data with no significant differences in its results when compared with a manual method. Even though this method was applied specifically for bone tissue, it works for a wide variety of different tissues and scientific questions.